
Niimpy Documentation
Release dev

the contributors

May 22, 2023

BASICS

1 Introduction 3

2 Installation 5

3 Architecture and workflow 7

4 File formats 11

5 Data schema 13

6 How to cite 15

7 See also 17

8 Quick start 19

9 niimpy API docs 23

10 Demo notebook for Niimpy Exploration layer modules 67

11 Demo notebook for analysing location data 95

12 Demo notebook for analyzing application data 101

13 Demo notebook for analyzing audio data 113

14 Demo notebook: Analysing battery data 127

15 Feature extraction 129

16 Basic transformations 133

17 Demo notebook for analyzing calls and SMS data 145

18 Demo notebook for analyzing screen on/off data 163

19 Surveys 183

20 Demo notebook: Analysing tracker data 187

21 Demo Notebook on Reading and Exploring the Studentlife Dataset 191

22 Adding features 197

i

23 About data sources 201

24 Aware 203

25 Survey 209

26 Indices and tables 211

Python Module Index 213

Index 215

ii

Niimpy Documentation, Release dev

Niimpy is a Python package for analyzing and quantifying behavioral data. It uses pandas to read data from disk,
perform basic manipulations, and provides many high-level functions for various types of data.

BASICS 1

Niimpy Documentation, Release dev

2 BASICS

CHAPTER

ONE

INTRODUCTION

1.1 What

Niimpy is a Python package for analyzing and quantifying behavioral data. It uses pandas to read data from disk, per-
form basic manipulations, provides explorative data analysis functions, offers many high-level preprocessing functions
for various types of data, and has functions for behavioral data analysis.

1.2 For Who

Niimpy is intended for researchers and data scientists analyzing digital behavioral data. Its purpose is to facilitate data
analysis by providing a standardized replicable workflow.

1.3 Why

Digital behavioral studies using personal digital devices typically produce rich multi-sensor longitudinal datasets of
mixed data types. Analyzing such data requires multidisciplinary expertise and software designed for the purpose.
Currently, no standardized workflow or tools exist to analyze such data sets. The analysis requires domain knowl-
edge in multiple fields and programming expertise. Niimpy package is specifically designed to analyze longitudinal,
multimodal behavioral data. Niimpy is a user-friendly open-source package that can be easily expanded and adapted
to specific research requirements. The toolbox facilitates the analysis phase by providing tools for data management,
preprocessing, feature extraction, and visualization. The more advanced analysis methods will be incorporated into the
toolbox in the future.

1.4 How

The toolbox is divided into four layers by functionality: 1) reading, 2) preprocessing, 3) exploration, and 4) analysis.
For more information about the layers, refer the toolbox Architecture and workflow chapter. The quick start guide is be
a good place to start. More detailed demo Jupyter notebooks are provided in the user guide chapter. Instructions for
individual functions can be found under API chapter niimpy package.

This documentation has following chapters:

• Basic information about the toolbox

• Quickstart guide

• API documentation

• User guide

3

Niimpy Documentation, Release dev

• Community guide

• Data documentation

Basic information contain this introduction, installation instructions, software architecture and workflow schematics,
and information about compatible data input-formats and the required data schema.

The quickstart guide provides a minimal working analysis example to get you started.

The API documentation has all technical details, containing instruction about how to use the toolbox functions, classes,
return types, arguments and such.

The user guide provide more thorough examples of each toolbox layer functionalities. The examples are in Jupyter
notebook format.

The community guide has information about the authors, community rules, contribution, and our collaborators.

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

Niimpy is a normal Python package to install. It is not currently available on PyPi, so you can install it manually from
github repository:

pip install niimpy

Note: only supports Python 3 (tested on 3.6. and above).

5

Niimpy Documentation, Release dev

6 Chapter 2. Installation

CHAPTER

THREE

ARCHITECTURE AND WORKFLOW

Niimpy toolbox functionality is organized into four layers:

1. Data Reading

2. Data Preprocessing

3. Data Exploration

4. Data Analysis.

Each layer in implemented as a module. Following table presents the layer properties.

Layer Purpose
Reading Read data from the on-disk formats
Preprocessing Prepare data for analysis
Exploration Initial analysis, explorative data analysis
Analysis Data analysis

3.1 Layer: reading

Data is read from the on-disk formats.

Typical input consists of filenames on disk, and typical output is a pandas.DataFrame with a direct mapping of on-disk
formats. For convenience, it may do various other small limiting and preprocessing, but should not look inside the data
too much.

These are in niimpy.reading.

3.2 Layer: preprocessing

After reading the data for analysis, preprocessing can handle filtering, etc. using the standard schema columns. It does
not look at or understand actual sensor values, and the unknown sensor-specific columns are passed straight through to
a future layer.

Typical input arguments include the DataFrame, and output is the DataFrame slightly adjusted, without affecting sensor-
specific columns.

These are in niimpy.preprocessing.

7

Niimpy Documentation, Release dev

3.3 Layer: exploration

These functions can do data aggregation, basic analysis, and visualization which is not specific to any sensor, instead
of to the data type.

These are in niimpy.exploration.

3.4 Layer: analysis

These functions understand the sensor values and perform analysis based on them.

These are often in modules specific to the type of analysis.

These are in niimpy.analysis.

3.5 Workflow

Typical behavioral data analysis workflow consists of following steps:

• Data reading -> Preprocessing -> Explorations -> Analysis

Other possible workflows:

• Data reading -> Exploration -> Preprocessing -> Analysis

• Data reading -> Exploration -> Preprocessing -> Exploration -> Analysis

Niimpy workflow diagram

8 Chapter 3. Architecture and workflow

Niimpy Documentation, Release dev

3.5. Workflow 9

Niimpy Documentation, Release dev

10 Chapter 3. Architecture and workflow

CHAPTER

FOUR

FILE FORMATS

In principle, Niimpy can deal with any files of any format - you only need to convert them to a DataFrame. Still, it is
very useful to have some common formats, so we present two standard formats with default readers:

• CSV files are very standard and normal to create and understand, but in order to deal with them everything must
be loaded into memory.

• sqlite3 databases, which requires sqlite3 to read, but provides more power for filtering and automatic processing
without reading everything into memory.

4.1 DataFrame format (in-memory)

In-memory, data is stored in a pandas DataFrame. This is basically a normal dataframe. There are some standardized
columns (see the schema) and the index is a DatetimeIndex.

4.2 CSV files

CSV files should have a header that lists the column names and generally be readable by pandas.read_csv.

Reading these can be done with niimpy.read_csv:

[1]: import os
import niimpy
import niimpy.config as config

Read the battery data
df= niimpy.read_csv(config.MULTIUSER_AWARE_BATTERY_PATH, tz='Europe/Helsinki')

4.3 sqlite3 databases

For the purposes of niimpy, sqlite3 databases can generally be seen as supercharged CSV files.

A single database file could contain multiple datasets within it, thus when reading them a table name must be specified.

One reads the entire database into memory using sqlite.read_sqlite:

[2]: # Read the sqlite3 data
df= niimpy.read_sqlite(config.SQLITE_SINGLEUSER_PATH, table="AwareScreen", tz='Europe/
→˓Helsinki')

11

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
schema.html

Niimpy Documentation, Release dev

You can list the tables within a database using niimpy.reading.read.read_sqlite_tables:

[3]: niimpy.reading.read.read_sqlite_tables(config.SQLITE_SINGLEUSER_PATH)

[3]: {'AwareScreen'}

sqlite3 files are highly recommended as a data storage format, since many common exploration options can be done
within the database itself without reading the whole data into memory or writing an iterator. However, the interface is
more difficult to use. Niimpy (before 2021-07) used this as its primary interface, but since then this interface has been
de-emphasized. You can read more in the database section, but this is only recommended if you need efficiency when
using massive amounts of data.

4.4 Other formats

You can add readers for any types of formats which you can convert into a Pandas dataframe (so basically any-
thing). For examples of readers, see niimpy/reading/read.py. Apply the function niimpy.preprocessing.
util.df_normalize in order to apply some standardizations to get the standard Niimpy format.

12 Chapter 4. File formats

database.html

CHAPTER

FIVE

DATA SCHEMA

This page documents the expected data schema of Niimpy. This does not extend to the contents of data from sensors
(yet), but relates to the metadata applicable to all sensors.

By using a standardized schema (mainly column names), we can promote interoperability of various tools.

5.1 Format

Data is in a tabular (relational) format. A row is an observation, and columns are properties of observations. (At this
level of abstraction, an “observation” may be one sensor observation, or some data which contains a package of multiple
observations).

In Niimpy, this is internally stored and handled as a pandas.DataFrame. The schema naturally maps to the columns/rows
of the DataFrames.

The on-disk format is currently irrelevant, as long as the producers can create a DataFrame of the necessary format.
Currently, we provide readers for sqlite3 and csv. Other standards may be implemented later.

5.2 Standard columns in DataFrames

By having standard columns, we can create portable functions that easily operate on diverse data types.

• The DataFrame index should be a pandas.DatetimeIndex.

• user: opaque identifier for the user. Often a string or integer.

• device: unique identifier for a user’s device (not the device type). For example, a user could have multiple
phones, and each would have a separate device identifier.

• time: timestamp of the observation, in unixtime (seconds since 00:00 on 1970-01-01), stored as an integer.
Unixtime is a globally unique measure of an instance of time on Earth, and to get localtime it is combined with
a timezone.

In on-disk formats, time is considered the master timestamp, many other time-based properties are com-
puted from it (though you could produce your own DataFrames other ways). In some of the standard formats
(CSV/sqlite3), when a file is read, this integer column is automatically converted to the datetime column below
and the DataFrame index.

• datetime: a DateTime-compatible object, such as in pandas a numpy.datetime64 object, used only in in-
memory representations (not usually written to portable save files). This should be an timezone-aware object,
and the data loader handles the timezone conversion. automatically added to DataFrames when loaded.

It is the responsibility of each loader (or preprocessor) to add this column to the in-memory representation by
converting the time column to this format. This happens automatically with readers included in niimpy.

13

Niimpy Documentation, Release dev

• timezone: Timezone in some format. Not yet used, to be decided.

• For questionaire data

– id: a question identifier. String, should be of form QUESTIONAIRE_QUESTION, for example PHQ9_01. The
common prefix is used to group questions of the same series.

– answer: the answer to the question. Opaque identifier.

Sensor-specific schemas are defined elsewhere. Columns which are not defined here are allowed and considered to be
part of the sensors, most APIs should pass through unknown columns for handling in a future layer (sensor analysis).

5.3 Other standard columns in Niimpy

These are not part of the primary schema, but are standard in Niimpy.

• day: e.g. 2021-04-09 (str)

• hour: hour of day, e.g. 15 (int)

5.4 Standard columns in on-disk formats

For the most part, this maps directly to the columns you see above. An on-disk format should have a time column
(unixtime, integer) plus whatever else is needed for that particular sensor, based on the above.

14 Chapter 5. Data schema

CHAPTER

SIX

HOW TO CITE

• Digitraceslab. (n.d.). Digitraceslab/niimpy: Python module for analysis of Behavorial Data. GitHub. Retrieved
April 28, 2022, from https://github.com/digitraceslab/niimpy

15

https://github.com/digitraceslab/niimpy

Niimpy Documentation, Release dev

16 Chapter 6. How to cite

CHAPTER

SEVEN

SEE ALSO

List of references:

• Aledavood, Talayeh, et al. “Data collection for mental health studies through digital platforms: requirements and
design of a prototype.” JMIR research protocols 6.6 (2017): e6919. doi:10.2196/resprot.6919

• Triana, Ana María, et al. “Mobile Monitoring of Mood (MoMo-Mood) pilot: A longitudinal, multi-sensor digital
phenotyping study of patients with major depressive disorder and healthy controls.” medRxiv (2020)

17

Niimpy Documentation, Release dev

18 Chapter 7. See also

CHAPTER

EIGHT

QUICK START

We will guide you through the main features of niimpy. This guide assumes that you have basic knowledge of Python.
Also, please refers to the installation page for installing niimpy.

This guide provides an example of reading and handling Aware battery data. The tutorial will guide you through 4
basic steps of a data analysis pipeline:

• Reading

• Preprocessing

• Visualization

• Basic analysis

[1]: # Setting up plotly environment
import plotly.io as pio
pio.renderers.default = "png"

[2]: import numpy as np
import niimpy
from niimpy import config
from niimpy.exploration.eda import punchcard, missingness
from niimpy.preprocessing import battery

8.1 Reading

niimpy provides a simple function to read data from csv and sqlite database. We will read a csv file containing 1 month
of battery data from an individual.

[3]: df = niimpy.read_csv(config.MULTIUSER_AWARE_BATTERY_PATH, tz='Europe/Helsinki')
df.head()

[3]: user device time
2020-01-09 02:20:02.924999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09 \
2020-01-09 02:21:30.405999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:24:12.805999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:35:38.561000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:35:38.953000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09

battery_level battery_status
2020-01-09 02:20:02.924999936+02:00 74 3 \

(continues on next page)

19

https://niimpy.readthedocs.io/en/latest/installation/

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 02:21:30.405999872+02:00 73 3
2020-01-09 02:24:12.805999872+02:00 72 3
2020-01-09 02:35:38.561000192+02:00 72 2
2020-01-09 02:35:38.953000192+02:00 72 2

battery_health battery_adaptor
2020-01-09 02:20:02.924999936+02:00 2 0 \
2020-01-09 02:21:30.405999872+02:00 2 0
2020-01-09 02:24:12.805999872+02:00 2 0
2020-01-09 02:35:38.561000192+02:00 2 0
2020-01-09 02:35:38.953000192+02:00 2 2

datetime
2020-01-09 02:20:02.924999936+02:00 2020-01-09 02:20:02.924999936+02:00
2020-01-09 02:21:30.405999872+02:00 2020-01-09 02:21:30.405999872+02:00
2020-01-09 02:24:12.805999872+02:00 2020-01-09 02:24:12.805999872+02:00
2020-01-09 02:35:38.561000192+02:00 2020-01-09 02:35:38.561000192+02:00
2020-01-09 02:35:38.953000192+02:00 2020-01-09 02:35:38.953000192+02:00

8.2 Preprocessing

There are various ways to handle battery data. For example, you can extract the gaps between consecutive battery
timestamps.

[4]: gaps = battery.battery_gaps(df, {})
gaps.head()

[4]: battery_gap
user
iGyXetHE3S8u 2019-08-05 14:00:00+03:00 0 days 00:01:18.600000

2019-08-05 14:30:00+03:00 0 days 00:27:18.396000
2019-08-05 15:00:00+03:00 0 days 00:51:11.997000192
2019-08-05 15:30:00+03:00 NaT
2019-08-05 16:00:00+03:00 0 days 00:59:23.522999808

niimpy can also extract the amount of battery data found within an interval.

[5]: occurences = battery.battery_occurrences(df, {"resample_args": {"rule": "1H"}})
occurences.head()

[5]: occurrences
user
iGyXetHE3S8u 2019-08-05 14:00:00+03:00 3

2019-08-05 15:00:00+03:00 1
2019-08-05 16:00:00+03:00 1
2019-08-05 17:00:00+03:00 1
2019-08-05 18:00:00+03:00 1

20 Chapter 8. Quick start

Niimpy Documentation, Release dev

8.3 Visualization

niimpy provides a selection of visualization tools curated for exploring behavioural data. For example, you can examine
the frenquency of battery level in specified interval.

[6]: fig = missingness.bar_count(df, columns=['battery_level'], sampling_freq='T')
fig.show()

In addition, you can analyze the battery level at each sampling interval by using a punchcard plot.

[7]: fig = punchcard.punchcard_plot(df,
user_list=['jd9INuQ5BBlW'],
columns=['battery_status', 'battery_level'],
resample='10T',
title="Battery level")

fig.show()

8.3. Visualization 21

Niimpy Documentation, Release dev

For more information, refer to the Exploration section.

22 Chapter 8. Quick start

https://niimpy.readthedocs.io/en/latest/api/niimpy.exploration/

CHAPTER

NINE

NIIMPY API DOCS

This section provides function reference for Niimpy. Please refer to the user guide for further details on the function
usage.

9.1 niimpy package

9.1.1 Subpackages

niimpy.analysis package

Module contents

niimpy.exploration package

Subpackages

niimpy.exploration.eda package

Submodules

niimpy.exploration.eda.categorical module

Created on Thu Nov 18 14:49:22 2021

@author: arsii

niimpy.exploration.eda.categorical.categorize_answers(df, question, answer_column)
Extract a question answered and count different answers.

Parameters

df
[Pandas Dataframe] Dataframe containing questionnaire data

question
[str] dataframe column sontaining question id

answer_column
[str] dataframe column containing the answer

Returns

23

Niimpy Documentation, Release dev

category_counts: Pandas Dataframe
Dataframe containing the category counts of answers filtered by the question

niimpy.exploration.eda.categorical.get_xticks_(ser)
Helper function for plot_categories function. Convert series index into xtick values and text.

Parameters

ser
[Pandas series] Series containing the categorized counts

niimpy.exploration.eda.categorical.plot_categories(df, title=None, xlabel=None, ylabel=None,
width=900, height=900)

Create a barplot of categorical data

Parameters

df
[Pandas Dataframe] Dataframe containing categorized data

title
[str] Plot title

xlabel
[str] Plot xlabel

ylabel
[str] Plot ylabel

width
[integer] Plot width

height
[integer] Plot height

Returns

fig: plotly Figure
A barplot of the input data

niimpy.exploration.eda.categorical.plot_grouped_categories(df, group, title=None, xlabel=None,
ylabel=None, width=900, height=900)

Plot summary barplot for questionnaire data.

Parameters

df: Pandas DataFrameGroupBy
A grouped dataframe containing categorical data

group: str
Column used to describe group

title
[str] Plot title

xlabel
[str] Plot xlabel

ylabel
[str] Plot ylabel

width
[integer] Plot width

24 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

height
[integer] Plot height

Returns

fig: plotly Figure
Figure containing barplots of the data in each group

niimpy.exploration.eda.categorical.question_by_group(df, question, id_column='id',
answer_column='answer', group='group')

Plot summary barplot for questionnaire data.

Parameters

df
[Pandas Dataframe] Dataframe containing questionnaire data

question
[str] question id

answer_column
[str] answer_column containing the answer

group
[str] group by this column

Returns

df
[Pandas DataFrameGroupBy] Dataframe a single answers column filtered by the question
parameter and grouped by the group parameter

niimpy.exploration.eda.categorical.questionnaire_grouped_summary(df, question, id_column='id',
answer_column='answer',
group='group', title=None,
xlabel=None, ylabel=None,
width=900, height=900)

Create a barplot of categorical data

Parameters

df
[Pandas Dataframe] Dataframe containing questionnaire data

question
[str] question id

column
[str] column containing the answer

title
[str] Plot title

xlabel
[str] Plot xlabel

ylabel
[str] Plot ylabel

user
[Bool or str] If str, plot single user data If False, plot group level data

9.1. niimpy package 25

Niimpy Documentation, Release dev

group
[str] group by this column

Returns

fig: plotly Figure
A barplot of the input data

niimpy.exploration.eda.categorical.questionnaire_summary(df, question, column, title=None,
xlabel=None, ylabel=None, user=None,
width=900, height=900)

Plot summary barplot for questionnaire data.

Parameters

df
[Pandas Dataframe] Dataframe containing questionnaire data

question
[str] question id

column
[str] column containing the answer

title
[str] Plot title

xlabel
[str] Plot xlabel

ylabel
[str] Plot ylabel

user
[Bool or str] If str, plot single user data If False, plot group level data

Returns

fig: plotly Figure
A barplot summary of the questionnaire

niimpy.exploration.eda.countplot module

Created on Mon Nov 8 14:42:18 2021

@author: arsii

niimpy.exploration.eda.countplot.barplot_(df, fig_title, xlabel, ylabel)
Plot a barplot showing counts for each subjects

A dataframe must have columns named ‘user’, containing the user id’s, and ‘values’ containing the observation
counts.

Parameters

df
[Pandas Dataframe] Dataframe containing the data

fig_title
[str] Plot title

26 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

xlabel
[str] Plot xlabel

ylabel
[str] Plot ylabel

Returns

niimpy.exploration.eda.countplot.boxplot_(df, fig_title, points='outliers', y='values', xlabel='Group',
ylabel='Count', binning=False)

Plot a boxplot

Parameters

df
[Pandas Dataframe] Dataframe containing the data

fig_title
[str] Plot title

points
[str] If ‘all’, show all observations next to boxplots If ‘outliers’, show only outlying points
The default is ‘outliers’

y: str
A dataframe column to plot

xlabel
[str] Plot xlabel

ylabel
[str] Plot ylabel

Returns

niimpy.exploration.eda.countplot.calculate_bins(df, binning)
Calculate time index based bins for each observation in the dataframe.

Parameters

df
[Pandas DataFrame]

binning
[str]

to_string
[bool]

Returns

bins
[pandas period index]

niimpy.exploration.eda.countplot.countplot(df, fig_title, plot_type='count', points='outliers',
aggregation='group', user=None, column=None,
binning=False)

Create boxplot comparing groups or individual users.

Parameters

df
[pandas DataFrame] A DataFrame to be visuliazed

9.1. niimpy package 27

Niimpy Documentation, Release dev

fig_title
[str] The plot title.

plot_type
[str] If ‘count’, plot observation count per group (boxplot) or by user (barplot) If ‘value’, plot
observation values per group (boxplot) The default is ‘count’

aggregation
[str] If ‘group’, plot group level summary If ‘user’, plot user level summary The default is
‘group’

user
[str] if given . . . The default is None

column
[str, optional] if None, count number of rows. If given, count only occurances of that column.
The default is None.

Returns

niimpy.exploration.eda.countplot.get_counts(df, aggregation)
Calculate datapoint counts by group or by user

Parameters

df
[Pandas DataFrame]

aggregation
[str]

Returns

n_events
[Pandas DataFrame]

niimpy.exploration.eda.lineplot module

Created on Wed Oct 27 09:53:46 2021

@author: arsii

niimpy.exploration.eda.lineplot.calculate_averages_(df, column, by)
calculate group averages by given timerange

niimpy.exploration.eda.lineplot.plot_averages_(df, column, by='hour')
Plot user group level averages by hour or by weekday.

Parameters

df
[Pandas Dataframe] Dataframe containing the data

column
[str] Columns to plot.

by
[str, optional] Indicator for group level averaging. The default is False. If ‘hour’, hourly
averages per group are presented. If ‘weekday’, daily averages per gruop are presented.

Returns

28 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

None.

niimpy.exploration.eda.lineplot.plot_timeseries_(df, columns, users, title, xlabel, ylabel,
resample=False, interpolate=False,
window_len=False, reset_index=False)

There goes the text.

Parameters

df
[Pandas Dataframe] Dataframe containing the data

columns
[list or str] Columns to plot.

users
[list or str] Users to plot.

title
[str] Plot title.

xlabel
[str] Plot xlabel.

ylabel
[str] Plot ylabel.

resample
[str, optional] Data resampling frequency. The default is False. For details: https://pandas.
pydata.org/docs/reference/api/pandas.DataFrame.resample.html

interpolate
[bool, optional] If true, time series will be interpolated using splines. The default is False.

window
[int, optional] Rolling window smoothing window size. The default is False.

reset_index
[bool, optional] If true, dataframe index will be resetted. The default is False.

Returns

None.

niimpy.exploration.eda.lineplot.resample_data_(df, resample, interpolate, window_len, reset_index)
resample dataframe for plotting

niimpy.exploration.eda.lineplot.timeplot(df, users, columns, title, xlabel, ylabel, resample=False,
interpolate=False, window=False, reset_index=False,
by=False)

Plot a time series plot. Plot selected users and columns or group level averages, aggregated by hour or weekday.

Parameters

df
[Pandas Dataframe] Dataframe containing the data

users
[list or str] Users to plot.

columns
[list or str] Columns to plot.

9.1. niimpy package 29

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html

Niimpy Documentation, Release dev

title
[str] Plot title.

xlabel
[str] Plot xlabel.

ylabel
[str] Plot ylabel.

resample
[str, optional] Data resampling frequency. The default is False. For details: https://pandas.
pydata.org/docs/reference/api/pandas.DataFrame.resample.html

interpolate
[bool, optional] If true, time series will be interpolated using splines. The default is False.

window
[int, optional] Rolling window smoothing window size. The default is False.

reset_index
[bool, optional] If true, dataframe index will be resetted. The default is False.

by
[str, optional] Indicator for group level averaging. The default is False. If ‘hour’, hourly
averages per group are presented. If ‘weekday’, daily averages per gruop are presented.

Returns
——-
None.

niimpy.exploration.eda.missingness module

This module is rewritten based on the missingno package. The original files can be found here: https://github.com/
ResidentMario/missingno

niimpy.exploration.eda.missingness.bar(df, columns=None, title='Data frequency', xaxis_title='',
yaxis_title='', sampling_freq=None, sampling_method='mean')

Display bar chart visualization of the nullity of the given DataFrame.

Parameters

df: pandas Dataframe
Dataframe to plot

columns: list, optional
Columns from input dataframe to investigate missingness. If none is given, uses all columns.

title: str
Figure’s title

xaxis_title: str, optional
x_axis’s label

yaxis_title: str, optional
y_axis’s label

sampling_freq: str, optional
Frequency to resample the data. Requires the dataframe to have datetime-like index. Possible
values: ‘H’, ‘T’

30 Chapter 9. niimpy API docs

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html
https://github.com/ResidentMario/missingno
https://github.com/ResidentMario/missingno

Niimpy Documentation, Release dev

sampling_method: str, optional
Resampling method. Possible values: ‘sum’, ‘mean’. Default value is ‘mean’.

Returns
——-
fig: Plotly figure.

niimpy.exploration.eda.missingness.bar_count(df, columns=None, title='Data frequency', xaxis_title='',
yaxis_title='', sampling_freq='H')

Display bar chart visualization of the nullity of the given DataFrame.

Parameters

df: pandas Dataframe
Dataframe to plot

columns: list, optional
Columns from input dataframe to investigate missingness. If none is given, uses all columns.

title: str
Figure’s title

xaxis_title: str, optional
x_axis’s label

yaxis_title: str, optional
y_axis’s label

sampling_freq: str, optional
Frequency to resample the data. Requires the dataframe to have datetime-like index. Possible
values: ‘H’, ‘T’

Returns

fig: Plotly figure.

niimpy.exploration.eda.missingness.heatmap(df, height=800, width=800, title='', xaxis_title='',
yaxis_title='')

Return ‘plotly’ heatmap visualization of the nullity correlation of the Dataframe.

Parameters

df: pandas Dataframe
Dataframe to plot

width: int:
Figure’s width

height: int:
Figure’s height

Returns
——-
fig: Plotly figure.

niimpy.exploration.eda.missingness.matrix(df, height=500, title='Data frequency', xaxis_title='',
yaxis_title='', sampling_freq=None,
sampling_method='mean')

Return matrix visualization of the nullity of data. For now, this function assumes that the data frame is datetime
indexed.

Parameters

9.1. niimpy package 31

Niimpy Documentation, Release dev

df: pandas Dataframe
Dataframe to plot

columns: list, optional
Columns from input dataframe to investigate missingness. If none is given, uses all columns.

title: str
Figure’s title

xaxis_title: str, optional
x_axis’s label

yaxis_title: str, optional
y_axis’s label

sampling_freq: str, optional
Frequency to resample the data. Requires the dataframe to have datetime-like index. Possible
values: ‘H’, ‘T’

sampling_method: str, optional
Resampling method. Possible values: ‘sum’, ‘mean’. Default value is ‘mean’.

Returns
——-
fig: Plotly figure.

niimpy.exploration.eda.punchcard module

Created on Thu Nov 18 16:14:47 2021

@author: arsii

niimpy.exploration.eda.punchcard.combine_dataframe_(df, user_list, columns, res, date_index,
agg_func=<function mean>)

resample values from multiple users into new dataframe

Parameters

df
[Pandas Dataframe] Dataframe containing the data

user_list
[list] List containing user names/id’s (str)

columns
[list] List of column names (str) to be plotted

res
[str] Resample parameter e.g., ‘D’ for resampling by day

date_index
[pd.date_range] Date range used as an index

agg_func
[numpy function] Aggregation function used with resample. The default is np.mean

Returns

df_comb
[pd.DataFrame] Resampled and combined dataframe

32 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

niimpy.exploration.eda.punchcard.get_timerange_(df, resample)
get first and last timepoint from the dataframe, and return a resampled datetimeindex.

Parameters

df
[Pandas Dataframe] Dataframe containing the data

ressample
[str] Resample parameter e.g., ‘D’ for resampling by day

Returns

date_index
[pd.DatatimeIndex] Resampled DatetimeIndex

niimpy.exploration.eda.punchcard.punchcard_(df, title, n_xticks, xtitle, ytitle)
create a punchcard plot

Parameters

df
[Pandas Dataframe] Dataframe containing the data

title
[str] Plot title.

n_xticks
[int or None] Number of xaxis ticks. If None, scaled automatically.

xtitle
[str] Plot xaxis title

ytitle
[str] Plot yaxis title

Returns

fig
[plotly.graph_objs._figure.Figure] Punchcard plot

niimpy.exploration.eda.punchcard.punchcard_plot(df, user_list=None, columns=None, title='Punchcard
Plot', resample='D', normalize=False,
agg_func=<function mean>, timerange=False)

Punchcard plot for given users and column with optional resampling

Parameters

df
[Pandas Dataframe] Dataframe containing the data

user_list
[list, optional] List containing user id’s as string. The default is None.

columns
[list, optional] List containing columns as strings. The default is None.

title
[str, optional] Plot title. The default is “Punchcard Plot”.

resample
[str, optional] Indicator for resampling frequency. The default is ‘D’ (day).

9.1. niimpy package 33

Niimpy Documentation, Release dev

agg_func
[numpy function] Aggregation function used with resample. The default is np.mean

normalize
[boolean, optional] If true, data is normalized using min-max-scaling. The default is False.

timerange
[boolean or tuple, optional] If false, timerange is not filtered. If tuple containing timestamps,
timerange is filtered. The default is False.

Returns

fig
[plotly.graph_objs._figure.Figure] Punchcard plot

Module contents

Submodules

niimpy.exploration.missingness module

niimpy.exploration.missingness.missing_data_format(question, keep_values=False)
Returns a series of timestamps in the right format to allow missing data visualization .

Parameters

question: Dataframe

niimpy.exploration.missingness.missing_noise(database, subject, start=None, end=None)
Returns a Dataframe with the estimated missing data from the ambient noise sensor.

NOTE: This function aggregates data by day.

Parameters

database: Niimpy database
user: string
start: datetime, optional
end: datetime, optional

Returns

avg_noise: Dataframe

niimpy.exploration.missingness.screen_missing_data(database, subject, start=None, end=None)
Returns a DataFrame contanining the percentage (range [0,1]) of loss data calculated based on the transitions
of screen status. In general, if screen_status(t) == screen_status(t+1), we declared we have at least one missing
point.

Parameters

database: Niimpy database
user: string
start: datetime, optional
end: datetime, optional

Returns

count: Dataframe

34 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

niimpy.exploration.setup_dataframe module

niimpy.exploration.setup_dataframe.create_categorical_dataframe()

Create a sample Pandas dataframe used by the test functions.

Returns

df
[pandas.DataFrame] Pandas dataframe containing sample data.

niimpy.exploration.setup_dataframe.create_dataframe()

Create a sample Pandas dataframe used by the test functions.

Returns

df
[pandas.DataFrame] Pandas dataframe containing sample data.

niimpy.exploration.setup_dataframe.create_missing_dataframe(nrows, ncols, density=0.9,
random_state=None,
index_type=None, freq=None)

Create a Pandas dataframe with random missingness.

Parameters

nrows
[int] Number of rows

ncols
[int] Number of columns

density: float
Amount of available data

random_state: float, optional
Random seed. If not given, default to 33.

index_type: float, optional
Accepts the following values: “dt” for timestamp, “int” for integer.

freq: string, optional:
Sampling frequency. This option is only available is index_type is “dt”.

Returns

df
[pandas.DataFrame] Pandas dataframe containing sample data with random missing rows.

niimpy.exploration.setup_dataframe.create_timeindex_dataframe(nrows, ncols, random_state=None,
freq=None)

Create a datetime index Pandas dataframe

Parameters

nrows
[int] Number of rows

ncols
[int] Number of columns

random_state: float, optional
Random seed. If not given, default to 33.

9.1. niimpy package 35

Niimpy Documentation, Release dev

freq: string, optional:
Sampling frequency.

Returns
——-
df

[pandas.DataFrame] Pandas dataframe containing sample data with random missing rows.

Module contents

niimpy.preprocessing package

Submodules

niimpy.preprocessing.application module

niimpy.preprocessing.application.app_count(df, bat, screen, feature_functions=None)
This function returns the number of times each app group has been used, within the specified timeframe. The
app groups are defined as a dictionary within the feature_functions variable. Examples of app groups are social
media, sports, games, etc. If no mapping is given, a default one will be used. If no resampling window is given,
the function sets a 30 min default time window. The function aggregates the duration by user, by app group, by
timewindow.

Parameters

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information. If no data is available, an empty dataframe should
be passed.

screen: pandas.DataFrame
Dataframe with the screen information. If no data is available, an empty dataframe should
be passed.

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name “” will be used. To include
information about the resampling window, please include the selected parameters from pan-
das.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.application.app_duration(df, bat, screen, feature_functions=None)
This function returns the duration of use of different app groups, within the specified timeframe. The app groups
are defined as a dictionary within the feature_functions variable. Examples of app groups are social media,
sports, games, etc. If no mapping is given, a default one will be used. If no resampling window is given, the
function sets a 30 min default time window. The function aggregates the duration by user, by app group, by
timewindow.

Parameters

36 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information. If no data is available, an empty dataframe should
be passed.

screen: pandas.DataFrame
Dataframe with the screen information. If no data is available, an empty dataframe should
be passed.

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name “application_name” will be used.
To include information about the resampling window, please include the selected parameters
from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.application.classify_app(df, feature_functions)
This function is a helper function for other screen preprocessing. The function classifies the screen events into
the groups specified by group_map.

Parameters

df: pandas.DataFrame
Input data frame

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of screen information.
Keys can be column names, other dictionaries, etc. It can contain a dictionary called
group_map, which has the mapping to define the app groups. Keys should be the app name,
values are the app groups (e.g. ‘my_app’:’my_app_group’)

Returns

df: dataframe
Resulting dataframe

niimpy.preprocessing.application.extract_features_app(df, bat, screen, features=None)
This function computes and organizes the selected features for application events. The function aggregates the
features by user, by app group, by time window. If no time window is specified, it will automatically aggregate
the features in 30 mins non-overlapping windows. If no group_map is provided, a default one will be used.

The complete list of features that can be calculated are: app_count, and app_duration.

Parameters

df: pandas.DataFrame
Input data frame

features: dict, optional
Dictionary keys contain the names of the features to compute. If none is given, all features
will be computed.

Returns

result: dataframe
Resulting dataframe

9.1. niimpy package 37

Niimpy Documentation, Release dev

niimpy.preprocessing.audio module

niimpy.preprocessing.audio.audio_count_loud(df_u, feature_functions=None)
This function returns the number of times, within the specified timeframe, when there has been some sound
louder than 70dB in the environment. If there is no specified timeframe, the function sets a 30 min default time
window. The function aggregates this number by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_count_silent(df_u, feature_functions=None)
This function returns the number of times, within the specified timeframe, when there has been some sound in
the environment. If there is no specified timeframe, the function sets a 30 min default time window. The function
aggregates this number by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_count_speech(df_u, feature_functions=None)
This function returns the number of times, within the specified timeframe, when there has been some sound
between 65Hz and 255Hz in the environment that could be specified as speech. If there is no specified timeframe,
the function sets a 30 min default time window. The function aggregates this number by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework

38 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_max_db(df_u, feature_functions=None)
This function returns the maximum decibels of the recorded audio snippets, within the specified timeframe. If
there is no specified timeframe, the function sets a 30 min default time window. The function aggregates this
number by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_max_freq(df_u, feature_functions=None)
This function returns the maximum frequency of the recorded audio snippets, within the specified timeframe. If
there is no specified timeframe, the function sets a 30 min default time window. The function aggregates this
number by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_mean_db(df_u, feature_functions=None)
This function returns the mean decibels of the recorded audio snippets, within the specified timeframe. If there
is no specified timeframe, the function sets a 30 min default time window. The function aggregates this number
by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

9.1. niimpy package 39

Niimpy Documentation, Release dev

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_mean_freq(df_u, feature_functions=None)
This function returns the mean frequency of the recorded audio snippets, within the specified timeframe. If there
is no specified timeframe, the function sets a 30 min default time window. The function aggregates this number
by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_median_db(df_u, feature_functions=None)
This function returns the median decibels of the recorded audio snippets, within the specified timeframe. If there
is no specified timeframe, the function sets a 30 min default time window. The function aggregates this number
by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_median_freq(df_u, feature_functions=None)
This function returns the median frequency of the recorded audio snippets, within the specified timeframe. If
there is no specified timeframe, the function sets a 30 min default time window. The function aggregates this
number by user, by timewindow.

40 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_min_db(df_u, feature_functions=None)
This function returns the minimum decibels of the recorded audio snippets, within the specified timeframe. If
there is no specified timeframe, the function sets a 30 min default time window. The function aggregates this
number by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_min_freq(df_u, feature_functions=None)
This function returns the minimum frequency of the recorded audio snippets, within the specified timeframe. If
there is no specified timeframe, the function sets a 30 min default time window. The function aggregates this
number by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

9.1. niimpy package 41

Niimpy Documentation, Release dev

niimpy.preprocessing.audio.audio_std_db(df_u, feature_functions=None)
This function returns the standard deviation of the decibels of the recorded audio snippets, within the specified
timeframe. If there is no specified timeframe, the function sets a 30 min default time window. The function
aggregates this number by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.audio_std_freq(df_u, feature_functions=None)
This function returns the standard deviation of the frequency of the recorded audio snippets, within the specified
timeframe. If there is no specified timeframe, the function sets a 30 min default time window. The function
aggregates this number by user, by timewindow.

Parameters

df_u: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.audio.extract_features_audio(df, features=None)
This function computes and organizes the selected features for audio snippets that have been recorded using
Aware Framework. The function aggregates the features by user, by time window. If no time window is specified,
it will automatically aggregate the features in 30 mins non-overlapping windows.

The complete list of features that can be calculated are: audio_count_silent, audio_count_speech, au-
dio_count_loud, audio_min_freq, audio_max_freq, audio_mean_freq, audio_median_freq, audio_std_freq, au-
dio_min_db, audio_max_db, audio_mean_db, audio_median_db, audio_std_db

Parameters

df: pandas.DataFrame
Input data frame

features: dict, optional
Dictionary keys contain the names of the features to compute. If none is given, all features
will be computed.

42 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.battery module

niimpy.preprocessing.battery.battery_charge_discharge(df, feature_functions)
Returns a DataFrame showing the mean difference in battery values and mean battery charge/discharge rate
within specified time windows. If there is no specified timeframe, the function sets a 30 min default time window.
Parameters ———- df: dataframe with date index

niimpy.preprocessing.battery.battery_discharge(df, feature_functions)
This function returns the mean discharge rate of the battery within a specified time window. If there is no
specified timeframe, the function sets a 30 min default time window. The function aggregates this number by
user, by timewindow. Parameters ———- df: pandas.DataFrame

Dataframe with the battery information

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of scrren information. Keys can be
column names, other dictionaries, etc.

Returns

result: dataframe

niimpy.preprocessing.battery.battery_gaps(df, feature_functions)
Returns a DataFrame with the mean time difference between consecutive battery timestamps. The mean is
calculated within intervals specified in feature_functions. The minimum size of the considered deltas can be
decided with the min_duration_between parameter.

Parameters

df: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of batter information.
Keys can be column names, other dictionaries, etc.

Optional arguments in feature_functions:
min_duration_between: Timedelta, for example, pd.Timedelta(minutes=5)

niimpy.preprocessing.battery.battery_mean_level(df, feature_functions)
This function returns the mean battery level within the specified timeframe. If there is no specified timeframe,
the function sets a 30 min default time window. The function aggregates this number by user, by timewindow.
Parameters ———- df: pandas.DataFrame

Dataframe with the battery information

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of scrren information. Keys can be
column names, other dictionaries, etc.

9.1. niimpy package 43

Niimpy Documentation, Release dev

Returns

result: dataframe

niimpy.preprocessing.battery.battery_median_level(df, feature_functions)
This function returns the median battery level within the specified timeframe. If there is no specified timeframe,
the function sets a 30 min default time window. The function aggregates this number by user, by timewindow.
Parameters ———- df: pandas.DataFrame

Dataframe with the battery information

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of scrren information. Keys can be
column names, other dictionaries, etc.

Returns

result: dataframe

niimpy.preprocessing.battery.battery_occurrences(df, feature_functions)
Returns a dataframe showing the amount of battery data points found within a specified time window. If
there is no specified timeframe, the function sets a 30 min default time window. Parameters ———- df: pan-
das.DataFrame

Dataframe with the battery information

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of batter information. Keys can be
column names, other dictionaries, etc.

niimpy.preprocessing.battery.battery_shutdown_time(df, feature_functions)
This function returns the total time the phone has been turned off within a specified time window. If there is no
specified timeframe, the function sets a 30 min default time window. The function aggregates this number by
user, by timewindow. Parameters ———- df: pandas.DataFrame

Dataframe with the battery information

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of scrren information. Keys can be
column names, other dictionaries, etc.

Returns

result: dataframe

niimpy.preprocessing.battery.battery_std_level(df, feature_functions)
This function returns the standard deviation battery level within the specified timeframe. If there is no specified
timeframe, the function sets a 30 min default time window. The function aggregates this number by user, by
timewindow. Parameters ———- df: pandas.DataFrame

Dataframe with the battery information

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of scrren information. Keys can be
column names, other dictionaries, etc.

44 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

Returns

result: dataframe

niimpy.preprocessing.battery.extract_features_battery(df, feature_functions=None)
Calculates battery features

Parameters

df
[pd.DataFrame] dataframe of battery data. It must contain these columns: battery_level and
battery_status.

feature_functions
[map (dictionary) of functions that compute features.] it is a map of map, where the keys
to the first map is the name of functions that compute features and the nested map contains
the keyword arguments to that function. If there is no arguments use an empty map. Default
is None. If None, all the available functions are used. Those functions are in the dict bat-
tery.ALL_FEATURE_FUNCTIONS. You can implement your own function and use it instead
or add it to the mentioned map.

Returns

features
[pd.DataFrame] Dataframe of computed features where the index is users and columns are
the the features.

niimpy.preprocessing.battery.find_battery_gaps(battery_df, other_df, feature_functions)
Returns a dataframe showing the gaps found only in the battery data. The default interval is 6 hours. Parameters
———- battery_df: Dataframe other_df: Dataframe

The data you want to compare with

niimpy.preprocessing.battery.find_non_battery_gaps(battery_df, other_df, feature_functions)
Returns a dataframe showing the gaps found only in the other data. The default interval is 6 hours. Parameters
———- battery_df: Dataframe other_df: Dataframe

The data you want to compare with

niimpy.preprocessing.battery.find_real_gaps(battery_df, other_df, feature_functions)
Returns a dataframe showing the gaps found both in the battery data and the other data. The default interval is 6
hours. Parameters ———- battery_df: Dataframe other_df: Dataframe

The data you want to compare with

niimpy.preprocessing.battery.format_battery_data(df, feature_functions)
Returns a DataFrame with battery data for a user. Parameters ———- battery: DataFrame with battery data

niimpy.preprocessing.battery.shutdown_info(df, feature_functions)
Returns a pandas DataFrame with battery information for the timestamps when the phone has shutdown. This in-
cludes both events, when the phone has shut down and when the phone has been rebooted. NOTE: This is a helper
function created originally to preprocess the application info data Parameters ———- bat: pandas.DataFrame

Dataframe with the battery information

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of scrren information. Keys can be
column names, other dictionaries, etc.

9.1. niimpy package 45

Niimpy Documentation, Release dev

Returns

shutdown: pandas series

niimpy.preprocessing.communication module

niimpy.preprocessing.communication.call_count(df, feature_functions=None)
This function returns the number of times, within the specified timeframe, when a call has been received, missed,
or initiated. If there is no specified timeframe, the function sets a 30 min default time window. The function
aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.communication.call_duration_mean(df, feature_functions=None)
This function returns the average duration of each call type, within the specified timeframe. The call types are
incoming, outgoing, and missed. If there is no specified timeframe, the function sets a 30 min default time
window. The function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.communication.call_duration_median(df, feature_functions=None)
This function returns the median duration of each call type, within the specified timeframe. The call types are
incoming, outgoing, and missed. If there is no specified timeframe, the function sets a 30 min default time
window. The function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

46 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.communication.call_duration_std(df, feature_functions=None)
This function returns the standard deviation of the duration of each call type, within the specified timeframe.
The call types are incoming, outgoing, and missed. If there is no specified timeframe, the function sets a 30 min
default time window. The function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.communication.call_duration_total(df, feature_functions=None)
This function returns the total duration of each call type, within the specified timeframe. The call types are
incoming, outgoing, and missed. If there is no specified timeframe, the function sets a 30 min default time
window. The function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

9.1. niimpy package 47

Niimpy Documentation, Release dev

niimpy.preprocessing.communication.call_outgoing_incoming_ratio(df, feature_functions=None)
This function returns the ratio of outgoing calls over incoming calls, within the specified timeframe. If there is
no specified timeframe, the function sets a 30 min default time window. The function aggregates this number by
user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.communication.extract_features_comms(df, features=None)
This function computes and organizes the selected features for calls and SMS events. The function aggregates
the features by user, by time window. If no time window is specified, it will automatically aggregate the features
in 30 mins non-overlapping windows.

The complete list of features that can be calculated are: call_duration_total, call_duration_mean,
call_duration_median, call_duration_std, call_count, call_outgoing_incoming_ratio, sms_count

Parameters

df: pandas.DataFrame
Input data frame

features: dict, optional
Dictionary keys contain the names of the features to compute. If none is given, all features
will be computed.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.communication.sms_count(df, feature_functions=None)
This function returns the number of times, within the specified timeframe, when an SMS has been sent/received.
If there is no specified timeframe, the function sets a 30 min default time window. The function aggregates this
number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

48 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

result: dataframe
Resulting dataframe

niimpy.preprocessing.filter module

Generic DataFrame filtering

This module provides functions for generic DataFrame filtering. In many cases, it is simpler to do these filtering
operations yourself directly on the DataFrames, but these functions simplify the operations of standard arguments in
other functions.

niimpy.preprocessing.filter.filter_dataframe(df, user=None, start=None, end=None,
rename_columns={})

Standard dataframe preprocessing filter.

This implements some standard and common dataframe preprocessing options, which are used in very
many functions. It is likely simpler and more clear to do these yourself on the DataFrames directly.

• select only certain user: df[‘user’] == user

• select date range: df[start:end]

• column map: df.rename(columns=rename_columns)

It returns a new dataframe (and does not modify the passed one in-place).

niimpy.preprocessing.location module

niimpy.preprocessing.location.cluster_locations(lats, lons, min_samples=5, eps=200)
Performs clustering on the locations

Parameters

lats
[pd.DataFrame] Latitudes

lons
[pd.DataFrame] Longitudes

mins_samples
[int] Minimum number of samples to form a cluster. Default is 5.

eps
[float] Epsilone parameter in DBSCAN. The maximum distance between two neighbour sam-
ples. Default is 200.

Returns

clusters
[array] Array of clusters. -1 indicates outlier.

niimpy.preprocessing.location.compute_nbin_maxdist_home(lats, lons, latlon_home, home_radius=50)
Computes number of bins in home and maximum distance to home

Parameters

lats
[pd.DataFrame] Latitudes

9.1. niimpy package 49

Niimpy Documentation, Release dev

lons
[pd.DataFrame] Longitudes

latlon_home
[array] A tuple (lat, lon) showing the coordinate of home

Returns

(n_home, max_dist_home)
[tuple] n_home: number of bins the person has been near the home max_dist_home: maxi-
mum distance that the person has been from home

niimpy.preprocessing.location.distance_matrix(lats, lons)
Compute distance matrix using great-circle distance formula

https://en.wikipedia.org/wiki/Great-circle_distance#Formulae

Parameters

lats
[array] Latitudes

lons
[array] Longitudes

Returns

dists
[matrix] Entry (i, j) shows the great-circle distance between point i and j, i.e. distance be-
tween (lats[i], lons[i]) and (lats[j], lons[j]).

niimpy.preprocessing.location.extract_features_location(df, feature_functions=None)
Calculates location features

Parameters

df
[pd.DataFrame] dataframe of location data. It must contain these columns: double_latitude,
double_longitude, user, group. double_speed is optional. If not provided, it will be com-
puted manually.

speed_threshold
[float] Bins whose speed is lower than speed_threshold are considred static and the rest are
moving.

feature_functions
[map (dictionary) of functions that compute features.] it is a map of map, where the keys
to the first map is the name of functions that compute features and the nested map contains
the keyword arguments to that function. If there is no arguments use an empty map. De-
fault is None. If None, all the available functions are used. Those functions are in the dict
location.ALL_FEATURE_FUNCTIONS. You can implement your own function and use it
instead or add it to the mentioned map.

Returns

features
[pd.DataFrame] Dataframe of computed features where the index is users and columns are
the the features.

niimpy.preprocessing.location.filter_location(location, remove_disabled=True, remove_zeros=True,
remove_network=True)

Remove low-quality or weird location samples

50 Chapter 9. niimpy API docs

https://en.wikipedia.org/wiki/Great-circle_distance#Formulae

Niimpy Documentation, Release dev

Parameters

location
[pd.DataFrame] DataFrame of locations

remove_disabled
[bool] Remove locations whose label is disabled

remove_zerso
[bool] Remove locations which their latitude and longitueds are close to 0

remove_network
[bool] Keep only locations whose provider is gps

Returns

location
[pd.DataFrame]

niimpy.preprocessing.location.find_home(lats, lons, times)
Find coordinates of the home of a person

Home is defined as the place most visited between 12am - 6am. Locations within this time period first clustered
and then the center of largest clusetr shows the home.

Parameters

lats
[array-like] Latitudes

lons
[array-like] Longitudes

times
[array-like] Time of the recorderd coordinates

Returns
——
(lat_home, lon_home)

[tuple of floats] Coordinates of the home

niimpy.preprocessing.location.get_speeds_totaldist(lats, lons, times)
Computes speed of bins with dividing distance by their time difference

Parameters

lats
[array-like] Array of latitudes

lons
[array-like] Array of longitudes

times
[array-like] Array of times associted with bins

Returns
——
(speeds, total_distances)

[tuple of speeds (array) and total distance travled (float)]

niimpy.preprocessing.location.location_distance_features(df, feature_functions={})
Calculates features related to distance and speed.

Parameters

9.1. niimpy package 51

Niimpy Documentation, Release dev

df: dataframe with date index
feature_functions: A dictionary of optional arguments
Optional arguments in feature_functions:

longitude_column: The name of the column with longitude data in a floating point format.
Defaults to ‘double_longitude’. latitude_column: The name of the column with latitude data
in a floating point format. Defaults to ‘double_latitude’. speed_column: The name of the col-
umn with speed data in a floating point format. Defaults to ‘double_speed’. resample_args:
a dictionary of arguments for the Pandas resample function. For example to resample by
hour, you would pass {“rule”: “1H”}.

niimpy.preprocessing.location.location_number_of_significant_places(df, feature_functions={})
Computes number of significant places

niimpy.preprocessing.location.location_significant_place_features(df, feature_functions={})
Calculates features related to Significant Places.

Parameters

df: dataframe with date index
feature_functions: A dictionary of optional arguments
Optional arguments in feature_functions:

longitude_column: The name of the column with longitude data in a floating point format.
Defaults to ‘double_longitude’. latitude_column: The name of the column with latitude data
in a floating point format. Defaults to ‘double_latitude’. speed_column: The name of the col-
umn with speed data in a floating point format. Defaults to ‘double_speed’. resample_args:
a dictionary of arguments for the Pandas resample function. For example to resample by
hour, you would pass {“rule”: “1H”}.

niimpy.preprocessing.location.number_of_significant_places(lats, lons, times)
Computes number of significant places.

Number of significant plcaes is computed by first clustering the locations in each month and then taking the
median of the number of clusters in each month.

It is assumed that lats and lons are the coordinates of static points.

Parameters

lats
[pd.DataFrame] Latitudes

lons
[pd.DataFrame] Longitudes

times
[array] Array of times

Returns
[the number of significant places discovered]

52 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

niimpy.preprocessing.sampledata module

Sample data of different types

niimpy.preprocessing.screen module

niimpy.preprocessing.screen.duration_util_screen(df)
This function is a helper function for other screen preprocessing. The function computes the duration of an event,
based on the classification function event_classification_screen.

Parameters

df: pandas.DataFrame
Input data frame

Returns

df: dataframe
Resulting dataframe

niimpy.preprocessing.screen.event_classification_screen(df, feature_functions)
This function is a helper function for other screen preprocessing. The function classifies the screen events into
four transition types: on, off, in use, and undefined, based on the screen events recorded. For example, if two
consecutive events are 0 and 3, there has been a transition from off to unlocked, i.e. the phone has been unlocked
and the events will be classified into the “use” transition.

Parameters

df: pandas.DataFrame
Input data frame

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

df: dataframe
Resulting dataframe

niimpy.preprocessing.screen.extract_features_screen(df, bat, features=None)
This function computes and organizes the selected features for screen events that have been recorded using Aware
Framework. The function aggregates the features by user, by time window. If no time window is specified, it
will automatically aggregate the features in 30 mins non-overlapping windows.

The complete list of features that can be calculated are: screen_off, screen_count, screen_duration,
screen_duration_min, screen_duration_max, screen_duration_median, screen_duration_mean,
screen_duration_std, and screen_first_unlock.

Parameters

df: pandas.DataFrame
Input data frame

features: dict
Dictionary keys contain the names of the features to compute. If none is given, all features
will be computed.

9.1. niimpy package 53

Niimpy Documentation, Release dev

Returns

computed_features: dataframe
Resulting dataframe

niimpy.preprocessing.screen.screen_count(df, bat, feature_functions=None)
This function returns the number of times, within the specified timeframe, when the screen has turned off, turned
on, and been in use. If there is no specified timeframe, the function sets a 30 min default time window. The
function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

df: dataframe
Resulting dataframe

niimpy.preprocessing.screen.screen_duration(df, bat, feature_functions=None)
This function returns the duration (in seconds) of each transition, within the specified timeframe. The transitions
are off, on, and in use. If there is no specified timeframe, the function sets a 30 min default time window. The
function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.screen.screen_duration_max(df, bat, feature_functions=None)
This function returns the duration (in seconds) of each transition, within the specified timeframe. The transitions
are off, on, and in use. If there is no specified timeframe, the function sets a 30 min default time window. The
function aggregates this number by user, by timewindow.

Parameters

54 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.screen.screen_duration_mean(df, bat, feature_functions=None)
This function returns the duration (in seconds) of each transition, within the specified timeframe. The transitions
are off, on, and in use. If there is no specified timeframe, the function sets a 30 min default time window. The
function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.screen.screen_duration_median(df, bat, feature_functions=None)
This function returns the duration (in seconds) of each transition, within the specified timeframe. The transitions
are off, on, and in use. If there is no specified timeframe, the function sets a 30 min default time window. The
function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

9.1. niimpy package 55

Niimpy Documentation, Release dev

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.screen.screen_duration_min(df, bat, feature_functions=None)
This function returns the duration (in seconds) of each transition, within the specified timeframe. The transitions
are off, on, and in use. If there is no specified timeframe, the function sets a 30 min default time window. The
function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.screen.screen_duration_std(df, bat, feature_functions=None)
This function returns the duration (in seconds) of each transition, within the specified timeframe. The transitions
are off, on, and in use. If there is no specified timeframe, the function sets a 30 min default time window. The
function aggregates this number by user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.screen.screen_first_unlock(df, bat, feature_functions)
This function returns the first time the phone was unlocked each day. The data is aggregated by user, by day.

Parameters

df: pandas.DataFrame
Input data frame

56 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used.

Returns

result: dataframe
Resulting dataframe

niimpy.preprocessing.screen.screen_off(df, bat, feature_functions=None)
This function returns the timestamps, within the specified timeframe, when the screen has turned off. If there is
no specified timeframe, the function sets a 30 min default time window. The function aggregates this number by
user, by timewindow.

Parameters

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict, optional
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc.

Returns

df: dataframe
Resulting dataframe

niimpy.preprocessing.screen.util_screen(df, bat, feature_functions)
This function is a helper function for all other screen preprocessing. The function has the option to merge
information from the battery sensors to include data when the phone is shut down. The function also detects the
missing datapoints (i.e. not allowed transitions like ON to ON).

Parameters

df: pandas.DataFrame
Input data frame

bat: pandas.DataFrame
Dataframe with the battery information

feature_functions: dict
Dictionary keys containing optional arguments for the computation of scrren information.
Keys can be column names, other dictionaries, etc. The functions needs the column name
where the data is stored; if none is given, the default name employed by Aware Framework
will be used. To include information about the resampling window, please include the se-
lected parameters from pandas.DataFrame.resample in a dictionary called resample_args.

Returns

df: dataframe
Resulting dataframe

9.1. niimpy package 57

Niimpy Documentation, Release dev

niimpy.preprocessing.subject_selection module

niimpy.preprocessing.survey module

niimpy.preprocessing.survey.daily_affect_variability(questions, subject=None)
Returns two DataFrames corresponding to the daily affect variability and mean daily affect, both measures defined
in the OLO paper available in 10.1371/journal.pone.0110907. In brief, the mean daily affect computes the mean
of each of the 7 questions (e.g. sad, cheerful, tired) asked in a likert scale from 0 to 7. Conversely, the daily affect
viariability computes the standard deviation of each of the 7 questions.

NOTE: This function aggregates data by day.

Parameters

questions: DataFrame with subject data (or database for backwards compatibility)
subject: string, optional (backwards compatibility only, in the future do filtering before).

Returns

DLA_mean: mean of the daily affect
DLA_std: standard deviation of the daily affect

niimpy.preprocessing.survey.survey_convert_to_numerical_answer(df, answer_col, question_id,
id_map, use_prefix=False)

Convert text answers into numerical value (assuming a long dataframe). Use answer mapping dictionaries pro-
vided by the users to convert the answers. Can convert multiple questions having the same prefix (e.g., PSS10_1,
PSS10_2, . . . ,PSS10_9) if prefix mapping is provided. Function returns original values for the answers that have
not been specified for conversion.

Parameters

df
[pandas dataframe] Dataframe containing the questions

answer_col
[str] Name of the column containing the answers

question_id
[str] Name of the column containing the question id.

id_map
[dictionary] Dictionary containing answer mappings (value) for each question_id (key), or a
dictionary containing a map for each question id prefix if use_prefix option is used.

use_prefix
[boolean] If False, uses given map (id_map) to convert questions. The default is False. If
True, use question id prefix map, so that multiple question_id’s having the same prefix may
be converted on the same time.

Returns

result
[pandas series] Series containing converted values and original values for aswers hat are not
supposed to be converted.

niimpy.preprocessing.survey.survey_print_statistic(df, question_id_col='id', answer_col='answer',
prefix=None, group=None)

Return survey statistic. Assuming that the question ids are stored in question_id_col and the survey answers are
stored in answer_col, this function returns all the relevant statistics for each question. The statistic includes min,
max, average and s.d of the scores of each question.

58 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

Parameters

df: pandas.DataFrame
Input data frame

question_id_col: string.
Column contains question id.

answer_col: string
Column contains answer in numerical values.

prefix: list, optional
List contains survey prefix. If None is given, search question_id_col for all possible cate-
gories.

group: string, optional
Column contains group factor. If this is given, survey statistics for each group will be returned

Returns
——-
dict: dictionary

A dictionary contains summary of each questionaire category. Example: {‘PHQ9’: {‘min’:
3, ‘max’: 8, ‘avg’: 4.5, ‘std’: 2}}

niimpy.preprocessing.survey.survey_sum_scores(df, survey_prefix=None, answer_col='answer',
id_column='id')

Sum all columns (like PHQ9_*) to get a survey score.

Parameters

df: pandas DataFrame
DataFrame should be a DateTime index, an answer_column with numeric scores, and an id_column with
question IDs like “PHQ9_1”, “PHQ9_2”, etc. The given survey_prefix is the “PHQ9” (no underscore) part
which selects the right questions (rows not matching this prefix won’t be included).

survey_prefix: string
The survey prefix in the ‘id’ column, e.g. ‘PHQ9’. An ‘_’ is appended.

niimpy.preprocessing.tracker module

niimpy.preprocessing.tracker.extract_features_tracker(df, features=None)
This function computes and organizes the selected features for tracker data recorded using Polar Ignite.

The complete list of features that can be calculated are: tracker_daily_step_distribution

Parameters

df: pandas.DataFrame
Input data frame

features: dict, optional
Dictionary keys contain the names of the features to compute. The value of the keys is the
list of parameters that will be passed to the function. If none is given, all features will be
computed.

Returns

result: dataframe
Resulting dataframe

9.1. niimpy package 59

Niimpy Documentation, Release dev

niimpy.preprocessing.tracker.step_summary(df, value_col='values', user_id=None, start_date=None,
end_date=None)

Return the summary of step count in a time range. The summary includes the following information of step count
per day: mean, standard deviation, min, max

Parameters

df
[Pandas Dataframe] Dataframe containing the hourly step count of an individual. The
dataframe must be date time index.

value_col: str.
Column contains step values. Default value is “values”.

user_id: list. Optional
List of user id. If none given, returns summary for all users.

start_date: string. Optional
Start date of time segment used for computing the summary. If not given, acquire summary
for the whole time range.

end_date: string. Optional
End date of time segment used for computing the summary. If not given, acquire summary
for the whole time range.

Returns

summary_df: pandas DataFrame
A dataframe containing user id and associated step summary.

niimpy.preprocessing.tracker.tracker_daily_step_distribution(steps_df)
Return distribution of steps within each day. Assuming the step count is recorded at hourly resolution, this
function will compute the contribution of each hourly step count into the daily count (percentage wise).

Parameters

steps_df
[Pandas Dataframe] Dataframe containing the hourly step count of an individual.

Returns

df: pandas DataFrame
A dataframe containing the distribution of step count per day at hourly resolution.

niimpy.preprocessing.util module

niimpy.preprocessing.util.aggregate(df, freq, method_numerical='mean', method_categorical='first',
groups=['user'], **resample_kwargs)

Grouping and resampling the data. This function performs separated resampling for different types of columns:
numerical and categorical.

Parameters

df
[pandas Dataframe] Dataframe to resample

freq
[string] Frequency to resample the data. Requires the dataframe to have datetime-like index.

60 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

method_numerical
[str] Resampling method for numerical columns. Possible values: ‘sum’, ‘mean’, ‘median’.
Default value is ‘mean’.

method_categorical
[str] Resampling method for categorical columns. Possible values: ‘first’, ‘mode’, ‘last’.

groups
[list] Columns used for groupby operation.

resample_kwargs
[dict] keywords to pass pandas resampling function

Returns

An aggregated and resampled multi-index dataframe.

niimpy.preprocessing.util.date_range(df, start, end)
Extract out a certain date range from a DataFrame.

Extract out a certain data range from a dataframe. The index must be the dates, and the index must be sorted.

niimpy.preprocessing.util.df_normalize(df, tz=None, old_tz=None)
Normalize a df (from sql) before presenting it to the user.

This sets the dataframe index to the time values, and converts times to pandas.TimeStamp:s. Modifies the data
frame inplace.

niimpy.preprocessing.util.install_extensions()

Automatically install sqlite extension functions.

Only works on Linux for now, improvements welcome.

niimpy.preprocessing.util.occurrence(series, bin_width=720, grouping_width=3600)
Number of 12-minute

This reproduces the logic of the “occurrence” database function, without needing the database.

inputs: pandas.Series of pandas.Timestamps

Output: pandas.DataFrame with timestamp index and ‘occurance’ column.

TODO: use the grouping_width option.

niimpy.preprocessing.util.set_tz(tz)
Globally set the preferred local timezone

niimpy.preprocessing.util.tmp_timezone(new_tz)
Temporarily override the global timezone for a black.

This is used as a context manager:

with tmp_timezone('Europe/Berlin'):
....

Note: this overrides the global timezone. In the future, there will be a way to handle timezones as non-global
variables, which should be preferred.

niimpy.preprocessing.util.to_datetime(value)

niimpy.preprocessing.util.uninstall_extensions()

Uninstall any installed extensions

9.1. niimpy package 61

Niimpy Documentation, Release dev

Module contents

niimpy.reading package

Submodules

niimpy.reading.database module

Read data from sqlite3 databases.

Direct use of this module is mostly deprecated.

Read data from sqlite3 databases, both into pandas.DataFrame:s (Database.raw(), among other functions), and Database
objects. The Database object does not immediately load data, but provides some methods to load data on demand later,
possibly doing various filtering and preprocessing already at the loading stage. This can save memory and processing
time, but is much more complex.

This module is mostly out-of-use now: read.read_sqlite is used instead, which wraps the .raw() method and reads all
data into memory.

Database format

When reading data, a table name must be specified (which allows multiple datasets to be put in one file). Table col-
umn names map to dataframe column names, with various standard processing (for example the ‘time’ column being
converted to the index)

Quick usage

db = database.open(FILE_NAME, tz=TZ) df = db.raw(TABLE_NAME, user=database.ALL)

Recommend usage:

df = niimpy.read_sqlite(FILE_NAME, TABLE_NAME, tz=TZ)

See also

niimpy.reading.read_*: currently recommended functions to access all types of data, including databases.

class niimpy.reading.database.ALL

Bases: object

Sentinel value for all users

class niimpy.reading.database.Data1(db, tz=None)
Bases: object

Database wrapper for niimpy data.

This opens a database and provides methods to do common operations.

62 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

Methods

count(*args, **kwargs) Return the number of rows
execute(*args, **kwargs) Execute rauw SQL code.
exists(*args, **kwargs) Returns True if any data exists
first(table, user[, start, end, offset, ...]) Return earliest data point.
get_survey_score(table, user, survey[, ...]) Get the survey results, summing scores.
last(*args, **kwargs) Return the latest timestamp.
raw(table, user[, limit, offset, start, end]) Read all data in a table and return it as a DataFrame.
tables() List all tables that are inside of this database.
user_table_counts() Return table of number of data points per user, per

table.
users([table]) Return set of all users in all tables
validate_username(user) Validate a username, for single/multiuser database

and so on.

hourly
occurrence
timestamps

count(*args, **kwargs)
Return the number of rows

See the “first” for more information.

execute(*args, **kwargs)
Execute rauw SQL code.

Execute raw SQL. Smply proxy all arguments to self.conn.execute(). This is simply a convenience shortcut.

exists(*args, **kwargs)
Returns True if any data exists

Follows the same syntax as .first(), .last(), and .count(), but the limit argument is not used.

first(table, user, start=None, end=None, offset=None, _aggregate='min', _limit=None)
Return earliest data point.

Return None if there is no data.

get_survey_score(table, user, survey, limit=None, start=None, end=None)
Get the survey results, summing scores.

survey: The servey prefix in the ‘id’ column, e.g. ‘PHQ9’. An ‘_’ is appended.

hourly(table, user, columns=[], limit=None, offset=None, start=None, end=None)

last(*args, **kwargs)
Return the latest timestamp.

See the “first” for more information.

occurrence(table, user, bin_width=720, limit=None, offset=None, start=None, end=None)

9.1. niimpy package 63

Niimpy Documentation, Release dev

raw(table, user, limit=None, offset=None, start=None, end=None)
Read all data in a table and return it as a DataFrame.

This reads all data (subject to several possible filters) and returns it as a DataFrame.

tables()

List all tables that are inside of this database.

Returns a set.

timestamps(table, user, limit=None, offset=None, start=None, end=None)

user_table_counts()

Return table of number of data points per user, per table.

Return a dataframe of row=table, column=user, value=number of counts of that user in that table.

users(table=None)
Return set of all users in all tables

validate_username(user)
Validate a username, for single/multiuser database and so on.

This function considers if the database is single or multi-user, and ensures a valid username or ALL.

It returns a valid username, so can be used as a wrapper, to handle future special cases, e.g.:

user = db.validate_username(user)

niimpy.reading.database.open(db, tz=None)
Open a database and return a Data1 object

class niimpy.reading.database.sqlite3_stdev

Bases: object

Sqlite sample standard deviation function in pure Python.

With conn.create_aggregate(“stdev”, 1, sqlite3_stdev), this adds a stdev function to sqlite.

Edge cases:

• Empty list = nan (different than C function, which is zero)

• Ignores nan input values (does not count them). (different than numpy: returns nan)

• ignores non-numeric types (no conversion)

Methods

finalize
step

finalize()

step(value)

64 Chapter 9. niimpy API docs

Niimpy Documentation, Release dev

niimpy.reading.read module

Read data from various formats, user entery point.

This module contains various functions read_* which load data from different formats into pandas.DataFrame:s. As a
side effect, it provides the authoritative information on how incoming data is converted to dataframes.

niimpy.reading.read.read_csv(filename, read_csv_options={}, add_group=None, tz=None)
Read DataFrame from csv file

This will read data from a csv file and then process the result with niimpy.util.df_normalize.

Parameters

filename
[str] filename of csv file

read_csv_options: dict
Dictionary of options to pandas.read_csv, if this is necessary for custom csv files.

add_group
[object] If given, add a ‘group’ column with all values set to this.

niimpy.reading.read.read_csv_string(string, tz=None)
Parse a string containing CSV and return dataframe

This should not be used for serious reading of CSV from disk, but can be useful for tests and examples. Various
CSV reading options are turned on in order to be better for examples:

• Allow comments in the CSV file

• Remove the datetime column (redundant with index but some older functions break without it, so default
readers need to leave it).

Parameters

string
[string containing CSV file]

Returns

df: pandas.DataFrame

niimpy.reading.read.read_sqlite(filename, table, add_group=None, user=<class
'niimpy.reading.database.ALL'>, limit=None, offset=None, start=None,
end=None, tz=None)

Read DataFrame from sqlite3 database

This will read data from a sqlite3 file, taking sensor data in a given table, and optionally apply various limits.

Parameters

filename
[str] filename of sqlite3 database

table
[str] table name of data within the database

add_group
[object] If given, add a ‘group’ column with all values set to this.

9.1. niimpy package 65

Niimpy Documentation, Release dev

user
[str or database.ALL, optional] If given, return only data matching this user (based an column
‘user’)

limit
[int, optional] If given, return only this many rows

offset
[int, optional] When used with limit, skip this many lines at the beginning

start
[int or float or str or datetime.datetime, optional] If given, limit to this starting time. Formats
can be int/float (unixtime), string (parsed with dateutil.parser.parser, or datetime.datetime.

end
[int or float or str or datetime.datetime, optional] Same meaning as ‘start’, but for end time

niimpy.reading.read.read_sqlite_tables(filename)
Return names of all tables in this database

Return a set of all tables contained in this database. This may be useful when you need to see what data is
available within a database.

Module contents

9.1.2 Submodules

niimpy.demo module

9.1.3 Module contents

66 Chapter 9. niimpy API docs

CHAPTER

TEN

DEMO NOTEBOOK FOR NIIMPY EXPLORATION LAYER MODULES

10.1 Introduction

To study and quantify human behavior using longitudinal multimodal digital data, it is essential to get to know the data
well first. These data from various sources or sensors, such as smartphones and watches and activity trackers, yields
data with different types and properties. The data may be a mixture of categorical, ordinal and numerical data, typically
consisting of time series measured for multiple subjetcs from different groups. While the data is typically dense, it is
also heterogenous and contains lots of missing values. Therefore, the analysis has to be conducted on many different
levels.

This notebook introduces the Niimpy toolbox exploration module, which seeks to address the aforementioned issues.
The module has functionalities for exploratory data analysis (EDA) of digital behavioral data. The module aims to
produce a summary of the data characteristics, inspecting the structures underlying the data, to detecting patterns and
changes in the patterns, and to assess the data quality (e.g., missing data, outliers). This information is highly essential
for assessing data validity, data filtering and selection, and for data preprocessing. The module includes functions for
plotting catogorical data, data counts, timeseries lineplots, punchcards and visualizing missing data.

Exploration module functions are supposed to run after data preprocessing, but they can be run also on the raw ob-
servations. All the functions are implemented by using Plotly Python Open sourde Library. Plotly enables interactive
visualizations which in turn makers it easier to explore different aspects of the data (e.g.,specific timerange and sum-
mary statistics).

This notebook uses several sample dataframes for module demonstration. The sample data is already preprocessed,
or will be preprocessed in notebook sections before visualizations. When the sample data is loaded, some of the key
characteristics of the data are displayed.

All eploration module functions require the data to follow data schema. defined in the Niimpy toolbox documentation.
The user must ensure that the input data follows the specified schema.

10.1.1 Sub-module overview

The following table shows accepted data types, visualization functions and the purpose of each exploration sub-module.
All submodules are located inside niimpy/exploration/eda -folder.

Sub-module Data type Functions For what
catogorical.py Categorical Barplot Observations counts and distributions
countplot.py Categorical* / Numerical Barplot/Boxplot Observation counts and distibutions
lineplot.py Numerical Lineplot Trend, cyclicity, patterns
punchcard.py Categorical* / Numerical Heatmap Temporal patterns of counts or values
missingness.py Categorical / Numerical Barplot / Heatmap Missing data patterns

67

https://niimpy.readthedocs.io/en/latest/preprocessing/
https://plotly.com/python/
https://niimpy.readthedocs.io/en/latest/schema/
https://niimpy.readthedocs.io/en/latest/

Niimpy Documentation, Release dev

Data types denoted with * are not compatible with every function within the module. *** ### *NOTES*

This notebook uses following definitions referring to data: * Feature refers to dataframe column that stores observations
(e.g., numerical sensor values, questionnaire answers) * User refers to unique identifier for each subject in the data.
Dataframe should also have a column named as user. * Group refers to unique group idenfier. If subjects are grouped,
dataframe shoudl have a column named as group.

10.1.2 Imports

Here we import modules needed for running this notebook.

[1]: import numpy as np
import pandas as pd
import plotly
import plotly.graph_objects as go
import plotly.express as px
import plotly.io as pio
import warnings
warnings.filterwarnings("ignore")
import niimpy
from niimpy import config
from niimpy.preprocessing.survey import survey_convert_to_numerical_answer, survey_print_
→˓statistic
from niimpy.preprocessing.survey import PHQ2_MAP, PSQI_MAP, PSS10_MAP, PANAS_MAP, GAD2_
→˓MAP, ID_MAP_PREFIX
from niimpy.exploration import setup_dataframe
from niimpy.exploration.eda import categorical, countplot, lineplot, missingness,␣
→˓punchcard

10.1.3 Plotly settings

Next code block defines default settings for plotly visualizations. Feel free to adjust the settings according to your
needs.

[2]: pio.renderers.default = "png"
pio.templates.default = "seaborn"
px.defaults.template = "ggplot2"
px.defaults.color_continuous_scale = px.colors.sequential.RdBu
px.defaults.width = 1200
px.defaults.height = 482
warnings.filterwarnings("ignore")

68 Chapter 10. Demo notebook for Niimpy Exploration layer modules

https://plotly.com/python/

Niimpy Documentation, Release dev

10.2 1) Categorical plot

This section introduces categorical plot module visualizes categorical data, such as questionnaire data responses. We
will demonstrate functions by using a mock survey dataframe, containing answers for: * Patient Health Questionnaire-2
(PHQ-2) * Perceived Stress Scale (PSS10) * Generalized Anxiety Disorder-2 (GAD-2)

The data will be preprocessed, and then it’s basic characteristics will be summarized before visualizations.

10.3 1.1) Reading the data

We’ll start by importing the data:

[3]: df = niimpy.read_csv(config.SURVEY_PATH, tz='Europe/Helsinki')
df.head()

[3]: user age gender Little interest or pleasure in doing things. \
0 1 20 Male several-days
1 2 32 Male more-than-half-the-days
2 3 15 Male more-than-half-the-days
3 4 35 Female not-at-all
4 5 23 Male more-than-half-the-days

Feeling down; depressed or hopeless. Feeling nervous; anxious or on edge. \
0 more-than-half-the-days not-at-all
1 more-than-half-the-days not-at-all
2 not-at-all several-days
3 nearly-every-day not-at-all
4 not-at-all more-than-half-the-days

Not being able to stop or control worrying. \
0 nearly-every-day
1 several-days
2 not-at-all
3 several-days
4 several-days

In the last month; how often have you felt that you were unable to control the␣
→˓important things in your life? \
0 almost-never
1 never
2 never
3 very-often
4 almost-never

In the last month; how often have you felt confident about your ability to handle your␣
→˓personal problems? \
0 sometimes
1 never
2 very-often
3 fairly-often
4 very-often

(continues on next page)

10.2. 1) Categorical plot 69

Niimpy Documentation, Release dev

(continued from previous page)

In the last month; how often have you felt that things were going your way? \
0 fairly-often
1 very-often
2 very-often
3 very-often
4 almost-never

In the last month; how often have you been able to control irritations in your life? \
0 never
1 sometimes
2 fairly-often
3 never
4 sometimes

In the last month; how often have you felt that you were on top of things? \
0 sometimes
1 never
2 never
3 sometimes
4 sometimes

In the last month; how often have you been angered because of things that were outside␣
→˓of your control? \
0 very-often
1 fairly-often
2 never
3 never
4 very-often

In the last month; how often have you felt difficulties were piling up so high that␣
→˓you could not overcome them?
0 fairly-often
1 never
2 almost-never
3 fairly-often
4 never

Then check some basic descriptive statistics:

[4]: df.describe()

[4]: user age
count 1000.000000 1000.000000
mean 500.500000 26.911000
std 288.819436 4.992595
min 1.000000 12.000000
25% 250.750000 23.000000
50% 500.500000 27.000000
75% 750.250000 30.000000
max 1000.000000 43.000000

The dataframe’s columns are raw questions from a survey. Some questions belong to a specific category, so we will
annotate them with ids. The id is constructed from a prefix (the questionnaire category: GAD, PHQ, PSQI etc.),

70 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

followed by the question number (1,2,3). Similarly, we will also the answers to meaningful numerical values.

Note: It’s important that the dataframe follows the below schema before passing into niimpy.

Next, we’ll convert the column names to question ID’s using predefined maps (python dictionaries) imported from
survey.py module. Then, we’ll transform the data from long to wide format. Finally we’ll add a column with id’s
matching the questions.

[5]: # Convert column name to id, based on provided mappers from niimpy
col_id = {**PHQ2_MAP, **PSQI_MAP, **PSS10_MAP, **PANAS_MAP, **GAD2_MAP}
selected_cols = [col for col in df.columns if col in col_id.keys()]

Convert data frame to long format
m_df = pd.melt(df, id_vars=['user', 'age', 'gender'], value_vars=selected_cols, var_name=
→˓'question', value_name='answer')

Assign questions to codes
m_df['id'] = m_df['question'].replace(col_id)
m_df.head()

[5]: user age gender question \
0 1 20 Male Little interest or pleasure in doing things.
1 2 32 Male Little interest or pleasure in doing things.
2 3 15 Male Little interest or pleasure in doing things.
3 4 35 Female Little interest or pleasure in doing things.
4 5 23 Male Little interest or pleasure in doing things.

answer id
0 several-days PHQ2_1
1 more-than-half-the-days PHQ2_1
2 more-than-half-the-days PHQ2_1
3 not-at-all PHQ2_1
4 more-than-half-the-days PHQ2_1

We can use a helper method to convert the answers into numerical value. The pre-defined mapper inside survey.py
would be useful for this step. Since all questionaires havin PHQ and PSS prefix in their name, use similar mappings
from categorical answer into numerical, we can use ID_MAP_PREFIXmapper that converts all the questionaires at same
time.

[6]: # Transform raw answers to numerical values
m_df['answer'] = survey_convert_to_numerical_answer(m_df,

answer_col='answer',
question_id='id',
id_map=ID_MAP_PREFIX,
use_prefix=True)

m_df.head()

[6]: user age gender question answer \
0 1 20 Male Little interest or pleasure in doing things. 1
1 2 32 Male Little interest or pleasure in doing things. 2
2 3 15 Male Little interest or pleasure in doing things. 2
3 4 35 Female Little interest or pleasure in doing things. 0
4 5 23 Male Little interest or pleasure in doing things. 2

id
0 PHQ2_1

(continues on next page)

10.3. 1.1) Reading the data 71

https://pandas.pydata.org/docs/reference/api/pandas.melt.html

Niimpy Documentation, Release dev

(continued from previous page)

1 PHQ2_1
2 PHQ2_1
3 PHQ2_1
4 PHQ2_1

We can also produce a summary of the questionaire’s score. This function can describe aggregated score over the whole
population, or specific subgroups.

First we’ll show statistics for the whole population:

[7]: d1 = survey_print_statistic(m_df)
pd.DataFrame(d1)

[7]: PHQ2 GAD2 PSS10
min 0.0000 0.000000 4.000000
max 6.0000 6.000000 27.000000
avg 3.0520 3.042000 14.006000
std 1.5855 1.536423 3.687759

Statistics by the group gender:

[8]: d2 = survey_print_statistic(m_df, group='gender')
pd.DataFrame(d2)

[8]: PHQ2 GAD2 PSS10
Female Male Female Male Female Male

min 0.000000 0.000000 0.000000 0.000000 4.000000 4.000000
max 6.000000 6.000000 6.000000 6.000000 27.000000 23.000000
avg 3.067210 3.037328 3.087576 2.998035 14.059063 13.954813
std 1.605337 1.567567 1.585157 1.488141 3.783230 3.596247

And finally statistics for PHQ questionnaires by group:

[9]: d3 = survey_print_statistic(m_df, group='gender', prefix='PHQ')
pd.DataFrame(d3)

[9]: PHQ
Female Male

min 0.000000 0.000000
max 6.000000 6.000000
avg 3.067210 3.037328
std 1.605337 1.567567

10.4 1.1. Questionnaire summary

We can now make some plots for the preprocessed data frame. First, we can display the summary for the specific
question (PHQ-2 first question).

[10]: fig = categorical.questionnaire_summary(m_df,
question = 'PHQ2_1',
column = 'answer',
title='PHQ2 question: Little interest or␣

(continues on next page)

72 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

(continued from previous page)

→˓pleasure in doing things /
 answer value frequencies',
xlabel='value',
ylabel='count',
width=600,
height=400)

fig.show()

The figure shows that the answer values (from 0 to 3) almost uniform in distribution.

10.5 1.2. Questionnaire grouped summary

We can also display the summary for each subgroup (gender).

[11]: fig = categorical.questionnaire_grouped_summary(m_df,
question='PSS10_9',
group='gender',
title='PSS10_9 Question /
 Score␣

→˓frequency distributions by group',
xlabel='score',
ylabel='count',
width=800,
height=400)

fig.show()

10.5. 1.2. Questionnaire grouped summary 73

Niimpy Documentation, Release dev

The figure shows that the differences between subgroups are not very large.

10.6 1.3. Questionnaire grouped summary score distribution

With some quick preprocessing, we can display the score distribution of each questionaire.

We’ll extract PSS-10 questionnaire answers from the dataframe, group the data by user and gender, and aggregate the
answer scores.

[12]: pss_sum_df = m_df[m_df['id'].str.startswith('PSS')] \
.groupby(['user', 'gender']) \
.agg({'answer':sum}) \
.reset_index()

pss_sum_df['id'] = 'PSS'

We’ll quickly inspect the preprocessed dataframe.

[13]: pss_sum_df

[13]: user gender answer id
0 1 Male 15 PSS
1 2 Male 9 PSS
2 3 Male 12 PSS
3 4 Female 16 PSS
4 5 Male 14 PSS
..
995 996 Female 17 PSS
996 997 Female 13 PSS
997 998 Male 13 PSS
998 999 Male 21 PSS
999 1000 Male 14 PSS

(continues on next page)

74 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

(continued from previous page)

[1000 rows x 4 columns]

And then visualize aggregated summary score distributions, grouped by gender:

[14]: fig = categorical.questionnaire_grouped_summary(pss_sum_df,
question='PSS',
group='gender',
title='PSS10',
xlabel='score',
ylabel='count',
width=800,
height=400)

fig.show()

The figure shows that the grouped summary score distrubutions are close to each other.

10.7 2) Countplot

This section introduces Countplot module. The module contain functions for user and group level observation count
(number of datapoints per user or group) visualization and observation value distributions. Observation counts use
barplots for user level and a boxplots for group level visualizations. Boxplots are used for group level value distributions.
The module assumes that the visualized data is numerical.

10.7. 2) Countplot 75

Niimpy Documentation, Release dev

10.7.1 Data

We will use sample from StudentLife dataset to demonstrate the module functions. The sample contains hourly aggre-
gated activity data (values from 0 to 5, where 0 corresponds to no activity, and 5 to high activity) and group information
based on pre- and post-study PHQ-9 test scores. Study subjects have been grouped by the depression symptom severity
into groups: none, mild, moderate, moderately severe, and severe. Preprocessed data sample is included in the Niimpy
toolbox sampledata folder.

[15]: # Load data
sl = niimpy.read_csv(config.SL_ACTIVITY_PATH, tz='Europe/Helsinki')
sl.set_index('timestamp',inplace=True)
sl.index = pd.to_datetime(sl.index)
sl_loc = sl.tz_localize(None)

[16]: sl_loc.head()

[16]: user activity group
timestamp
2013-03-27 06:00:00 u00 2 none
2013-03-27 07:00:00 u00 1 none
2013-03-27 08:00:00 u00 2 none
2013-03-27 09:00:00 u00 3 none
2013-03-27 10:00:00 u00 4 none

Before visualizations, we’ll inspect the data.

[17]: sl_loc.describe()

[17]: activity
count 55907.000000
mean 0.750264
std 1.298238
min 0.000000
25% 0.000000
50% 0.000000
75% 1.000000
max 5.000000

[18]: sl_loc.group.unique()

[18]: array(['none', 'severe', 'mild', 'moderately severe', 'moderate'],
dtype=object)

10.8 2.1. User level observation count

At first we visualize the number of observations for each subject.

[19]: fig = countplot.countplot(sl,
fig_title='Activity event counts by user',
plot_type='count',
points='all',
aggregation='user',

(continues on next page)

76 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

(continued from previous page)

user=None,
column=None,
binning=False)

fig.show()

The barplot shows that there are differences in user total activity counts. The user u24 has the lowest event count of
710 and users u02 and u59 have the highest count of 1584.

10.9 2.2. Group level observation count

Next we’ll inspect group level daily activity event count distributions by using boxplots. For the improved clarity, we
select a timerange of one week from the data.

[20]: sl_one_week = sl_loc.loc['2013-03-28':'2013-4-3']

fig = countplot.countplot(sl_one_week,
fig_title='Group level daily activity event count distributions

→˓',
plot_type='value',
points='all',
aggregation='group',
user=None,
column='activity',
binning='D')

fig.show()

10.9. 2.2. Group level observation count 77

Niimpy Documentation, Release dev

The boxplot shows some variability in group level event count distributions across the days spanning from Mar 28 to
Apr 3 2013.

10.10 2.3. Group level value distributions

Finally we visualize group level activity value distributions for whole time range.

[21]: fig = countplot.countplot(sl,
fig_title='Group level activity score distributions',
plot_type='value',
points='outliers',
aggregation='group',
user=None,
column='activity',
binning=False)

fig.show()

The boxplot shows that activity score distribution for groups mild and moderately severe differ from the rest.

78 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

10.11 3. Lineplot

This section introduces Lineplot module functions. We use the same StudentLife dataset derived activity data as in
previous section.

10.12 3.1. Lineplot

Lineplot functions display numerical feature values on time axis. The user can optionally resample (downsample)
and smoothen the data for better visual clarity.

10.13 3.1.1. Single user single feature

At first, we’ll visualize single user single feature data, without resampling or smoothing.

[22]: fig = lineplot.timeplot(sl_loc,
users=['u01'],
columns=['activity'],
title='User: {} activity lineplot'.format('u01'),
xlabel='Date',
ylabel='Value',
resample=False,
interpolate=False,
window=1,
reset_index=False)

fig.show()

The figure showing all the activity datapoints is difficult to interpet. By zooming in the time range, the daily patters
come apparent. There is no or low activity during the night.

10.11. 3. Lineplot 79

Niimpy Documentation, Release dev

10.14 3.1.2. Single user single feature index resetted

Next, we’ll plot visualize the same data using resampling by hour, and 24 hour rolling window smoothing for improved
visualization clarity. We also reset the index, showing now hours from the first activity feature observation.

[23]: fig = lineplot.timeplot(sl_loc,
users=['u00'],
columns=['activity'],
title='User: {} activity lineplot /
 resetted index'.format(

→˓'u01'),
xlabel='Date',
ylabel='Value',
resample='H',
interpolate=True,
window=24,
reset_index=True)

fig.show()

By zooming in the smoothed lineplot, daily activity patterns are easier to detect.

10.15 3.1.3. Single user single feature, aggregated by day

Next visualization shows resamplig by day and 7 day rolling window smoothing, making the activity time series trend
visible.

[24]: fig = lineplot.timeplot(sl_loc,
users=['u00'],
columns=['activity'],
title='User: {} activity lineplot /
 rolling window (7 days)␣

→˓smoothing'.format('u01'),
(continues on next page)

80 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

(continued from previous page)

xlabel='Date',
ylabel='Value',
resample='D',
interpolate=True,
window=7)

fig.show()

Daily aggregated and smoothed data makes the user activity trend visible. There is a peak at May 9 and the crest at
May 23.

10.16 3.2. Multiple subjects single feature

The following visualization superimposes three subject’s activity on same figure.

[25]: fig = lineplot.timeplot(sl_loc,
users=['u00','u01'],
columns=['activity'],
title='User: {}, {} activity lineplot /
 rolling window (7␣

→˓days) smoothing'.format('u00','u01'),
xlabel='Date',
ylabel='Value',
resample='D',
interpolate=True,
window=7)

fig.show()

10.16. 3.2. Multiple subjects single feature 81

Niimpy Documentation, Release dev

The figure shows that the user daily averaged activity is quite similar in the beginning of inspected time range. In first
two weeks of May, the activity shows opposing trends (user u00 activity increases and user u01 decreases).

10.17 3.3. Group level hourly averages

Next we’ll compare group level hourly average activity.

[26]: fig = lineplot.timeplot(sl_loc,
users='Group',
columns=['activity'],
title='User group activity /
 hourly averages',
xlabel='Date',
ylabel='Value',
resample='D',
interpolate=True,
window=7,
reset_index=False,
by='hour')

fig.show()

82 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

The time plot reveals that the hourly averaged group level activity follows circadian rhytmn (less activity during the
night). Moderately severe group seems to be least active group during the latter half of the day.

10.18 3.4. Group level weekday averages

And finally,

[27]: fig = lineplot.timeplot(sl_loc,
users='Group',
columns=['activity'],
title='User Activity',
xlabel='Date',
ylabel='Value',
resample='D',
interpolate=True,
window=7,
reset_index=False,
by='weekday')

fig.show()

10.18. 3.4. Group level weekday averages 83

Niimpy Documentation, Release dev

The timeplot shows that there is some differences between the average group level activity, e.g., group mild being more
active than moderately severe. Additionally, activity during Sundays is at lower level in comparison with weekdays.

10.19 4. Punchcard

This section introduces Punchcard module functions. The functions aggregate the data and show the averaged value
for each timepoint. We use the same StudentLife dataset derived activity data as in two previous sections.

10.20 4.1. Single user punchcard

At first we visualize one daily aggregated mean activity for single subject. We’ll change the plot color to grayscale for
improved clarity.

[28]: px.defaults.color_continuous_scale = px.colors.sequential.gray

[29]: fig = punchcard.punchcard_plot(sl,
user_list=['u00'],
columns=['activity'],
title="User {} activity punchcard".format('u00'),
resample='D',
normalize=False,
agg_func=np.mean,
timerange=False)

fig.show()

84 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

The punchcard reveals that May 5th has the highest average activity and May 18th, 20th, and 21th have the lowest
activity.

10.21 4.2. Multiple user punchcard

Next, we’ll visualize mean activity for multiple subjects.

[30]: fig = punchcard.punchcard_plot(sl,
user_list=['u00','u01','u02'],
columns=['activity'],
title="Users {}, {}, and {} activity punchcard".format(

→˓'u00','u01','u02'),
resample='D',
normalize=False,
agg_func=np.mean,
timerange=False)

fig.show()

10.21. 4.2. Multiple user punchcard 85

Niimpy Documentation, Release dev

The punchard allows comparison of daily average activity for multiple subjects. It seems that there is not evident
common pattern in the activity.

10.22 4.3. Single user punchcard showing two features

Lastly, we’ll visualize daily aggregated single user activity side by side with activity of previous week. We start by
shifting the activity by one week and by adding it to the original dataframe.

[31]: sl_loc['previous_week_activity'] = sl_loc['activity'].shift(periods=7, fill_value=0)

[32]: fig = punchcard.punchcard_plot(sl_loc,
user_list=['u00'],
columns=['activity','previous_week_activity'],
title="User {} activity and previous week activity␣

→˓punchcard".format('u00'),
resample='D',
normalize=False,
agg_func=np.mean,
timerange=False)

fig.show()

The punchcard show weekly repeating patterns in subjects activity.

10.23 5) Missingness

This sections introduces Missingness module for missing data inspection. The module features data missingness visu-
alizations by frequency and by timepoint. Additionally, it offers an option for missing data correlation visualization.

86 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

10.23.1 Data

For data missingness visualizations, we’ll create a mock dataframe with missing values using niimpy.util.
create_missing_dataframe function.

[33]: df_m = setup_dataframe.create_missing_dataframe(nrows=2*24*14, ncols=5, density=0.7,␣
→˓index_type='dt', freq='10T')
df_m.columns = ['User_1','User_2','User_3','User_4','User_5',]

We will quickly inspect the dataframe before the visualizations.

[34]: df_m

[34]: User_1 User_2 User_3 User_4 User_5
2022-01-01 00:00:00 61.510061 NaN 94.183162 NaN 17.182417
2022-01-01 00:10:00 NaN 79.917067 2.262049 NaN 50.717029
2022-01-01 00:20:00 NaN NaN 78.738399 62.668739 89.811021
2022-01-01 00:30:00 46.090139 45.456629 89.636218 NaN 84.734977
2022-01-01 00:40:00 67.590468 NaN NaN 63.255760 52.828918
...
2022-01-05 15:10:00 57.428122 22.149352 84.623527 5.111538 96.280872
2022-01-05 15:20:00 55.412583 NaN 26.508021 26.090605 49.644855
2022-01-05 15:30:00 NaN 85.720930 7.869486 NaN 80.884746
2022-01-05 15:40:00 NaN 64.156419 19.482492 93.745107 50.000204
2022-01-05 15:50:00 32.042671 NaN 36.168003 NaN 41.869135

[672 rows x 5 columns]

[35]: df_m.describe()

[35]: User_1 User_2 User_3 User_4 User_5
count 462.000000 486.000000 479.000000 450.000000 475.000000
mean 51.094058 51.253925 53.111200 51.446476 51.093412
std 27.747781 28.160343 27.983376 28.974988 28.751183
min 1.277476 1.136281 1.239122 1.272853 1.158063
25% 28.013887 28.529354 29.920174 25.762065 24.852271
50% 53.168911 52.792652 55.010363 51.043262 49.868089
75% 73.824861 75.177829 77.905901 76.606165 76.494873
max 99.723094 99.964264 99.640601 99.791555 99.895162

10.24 5.1. Data frequency by feature

First, we create a histogram to visualize data frequency per column. Here, frequency of 1 indicates no missing data
points and 0 that all data points are missing.

[36]: fig = missingness.bar(df_m,
xaxis_title='User',
yaxis_title='Frequency')

fig.show()

10.24. 5.1. Data frequency by feature 87

Niimpy Documentation, Release dev

The data frequency is nearly similar for each user, User_5 having the highest frequency.

10.25 5.2. Average frequency by user

Next, we will show average data frequency for all users.

[37]: fig = missingness.bar(df_m,
sampling_freq='30T',
xaxis_title='Time',
yaxis_title='Frequency')

fig.show()

The overall data frequency suggests no clear pattern for data missingness.

88 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

10.26 5.3. Missingness matrix

We can also create a missingness matrix visualization for the dataframe. The nullity matrix show data missingess by a
timepoint.

[38]: fig = missingness.matrix(df_m,
sampling_freq='30T',
xaxis_title="User ID",
yaxis_title="Time")

fig.show()

10.27 5.4. Missing data correlations

Finally, we plot a heatmap to display the correlations between missing data.

Correlation ranges from -1 to 1: * -1 means that if one variable appears then the other will be missing. * 0 means that
there is no correlation between the missingness of two variables. * 1 means that the two variables will always appear
together.

10.27.1 Data

For the correlations, we use NYC collision factors sample data.

[39]: collisions = pd.read_csv("https://raw.githubusercontent.com/ResidentMario/missingno-data/
→˓master/nyc_collision_factors.csv")

First, we’ll inspect the data frame.

[40]: collisions.head()

[40]: DATE TIME BOROUGH ZIP CODE LATITUDE LONGITUDE \
0 11/10/2016 16:11:00 BROOKLYN 11208.0 40.662514 -73.872007
1 11/10/2016 05:11:00 MANHATTAN 10013.0 40.721323 -74.008344
2 04/16/2016 09:15:00 BROOKLYN 11201.0 40.687999 -73.997563

(continues on next page)

10.26. 5.3. Missingness matrix 89

https://github.com/ResidentMario/missingno

Niimpy Documentation, Release dev

(continued from previous page)

3 04/15/2016 10:20:00 QUEENS 11375.0 40.719228 -73.854542
4 04/15/2016 10:35:00 BROOKLYN 11210.0 40.632147 -73.952731

LOCATION ON STREET NAME CROSS STREET NAME \
0 (40.6625139, -73.8720068) WORTMAN AVENUE MONTAUK AVENUE
1 (40.7213228, -74.0083444) HUBERT STREET HUDSON STREET
2 (40.6879989, -73.9975625) HENRY STREET WARREN STREET
3 (40.7192276, -73.8545422) NaN NaN
4 (40.6321467, -73.9527315) BEDFORD AVENUE CAMPUS ROAD

OFF STREET NAME ... CONTRIBUTING FACTOR VEHICLE 1 \
0 NaN ... Failure to Yield Right-of-Way
1 NaN ... Failure to Yield Right-of-Way
2 NaN ... Lost Consciousness
3 67-64 FLEET STREET ... Failure to Yield Right-of-Way
4 NaN ... Failure to Yield Right-of-Way

CONTRIBUTING FACTOR VEHICLE 2 CONTRIBUTING FACTOR VEHICLE 3 \
0 Unspecified NaN
1 NaN NaN
2 Lost Consciousness NaN
3 Failure to Yield Right-of-Way Failure to Yield Right-of-Way
4 Failure to Yield Right-of-Way NaN

CONTRIBUTING FACTOR VEHICLE 4 CONTRIBUTING FACTOR VEHICLE 5 \
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

VEHICLE TYPE CODE 1 VEHICLE TYPE CODE 2 VEHICLE TYPE CODE 3 \
0 TAXI PASSENGER VEHICLE NaN
1 PASSENGER VEHICLE NaN NaN
2 PASSENGER VEHICLE VAN NaN
3 PASSENGER VEHICLE PASSENGER VEHICLE PASSENGER VEHICLE
4 PASSENGER VEHICLE PASSENGER VEHICLE NaN

VEHICLE TYPE CODE 4 VEHICLE TYPE CODE 5
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN

[5 rows x 26 columns]

[41]: collisions.dtypes

[41]: DATE object
TIME object
BOROUGH object

(continues on next page)

90 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

(continued from previous page)

ZIP CODE float64
LATITUDE float64
LONGITUDE float64
LOCATION object
ON STREET NAME object
CROSS STREET NAME object
OFF STREET NAME object
NUMBER OF PERSONS INJURED int64
NUMBER OF PERSONS KILLED int64
NUMBER OF PEDESTRIANS INJURED int64
NUMBER OF PEDESTRIANS KILLED int64
NUMBER OF CYCLISTS INJURED float64
NUMBER OF CYCLISTS KILLED float64
CONTRIBUTING FACTOR VEHICLE 1 object
CONTRIBUTING FACTOR VEHICLE 2 object
CONTRIBUTING FACTOR VEHICLE 3 object
CONTRIBUTING FACTOR VEHICLE 4 object
CONTRIBUTING FACTOR VEHICLE 5 object
VEHICLE TYPE CODE 1 object
VEHICLE TYPE CODE 2 object
VEHICLE TYPE CODE 3 object
VEHICLE TYPE CODE 4 object
VEHICLE TYPE CODE 5 object
dtype: object

We will then inspect the basic statistics.

[42]: collisions.describe()

[42]: ZIP CODE LATITUDE LONGITUDE NUMBER OF PERSONS INJURED \
count 6919.000000 7303.000000 7303.000000 7303.000000
mean 10900.746640 40.717653 -73.921406 0.350678
std 551.568724 0.069437 0.083317 0.707873
min 10001.000000 40.502341 -74.248277 0.000000
25% 10310.000000 40.670865 -73.980744 0.000000
50% 11211.000000 40.723260 -73.933888 0.000000
75% 11355.000000 40.759527 -73.864463 1.000000
max 11694.000000 40.909628 -73.702590 16.000000

NUMBER OF PERSONS KILLED NUMBER OF PEDESTRIANS INJURED \
count 7303.000000 7303.000000
mean 0.000959 0.133644
std 0.030947 0.362129
min 0.000000 0.000000
25% 0.000000 0.000000
50% 0.000000 0.000000
75% 0.000000 0.000000
max 1.000000 3.000000

NUMBER OF PEDESTRIANS KILLED NUMBER OF CYCLISTS INJURED \
count 7303.000000 0.0
mean 0.000822 NaN
std 0.028653 NaN

(continues on next page)

10.27. 5.4. Missing data correlations 91

Niimpy Documentation, Release dev

(continued from previous page)

min 0.000000 NaN
25% 0.000000 NaN
50% 0.000000 NaN
75% 0.000000 NaN
max 1.000000 NaN

NUMBER OF CYCLISTS KILLED
count 0.0
mean NaN
std NaN
min NaN
25% NaN
50% NaN
75% NaN
max NaN

Finally, we will visualize the nullity (how strongly the presence or absence of one variable affects the presence of
another) correlations by a heatmap and a dendrogram.

[43]: fig = missingness.heatmap(collisions)
fig.show()

92 Chapter 10. Demo notebook for Niimpy Exploration layer modules

Niimpy Documentation, Release dev

The nullity heatmap and dendrogram reveals a data correlation structure, e.g., vehicle type codes and contributing
factor vehicle are highly correlated. Features having complete data are not shown on the figure.

10.27. 5.4. Missing data correlations 93

Niimpy Documentation, Release dev

94 Chapter 10. Demo notebook for Niimpy Exploration layer modules

CHAPTER

ELEVEN

DEMO NOTEBOOK FOR ANALYSING LOCATION DATA

11.1 Introduction

GPS location data contain rich information about people’s behavioral and mobility patterns. However, working with
such data is a challenging task since there exists a lot of noise and missingness. Also, designing relevant features to
gain knowledge about the mobility pattern of subjects is a crucial task. To address these problems, niimpy provides
these main functions to clean, downsample, and extract features from GPS location data:

• niimpy.preprocessing.location.filter_location: removes low-quality location data points

• niimpy.util.aggregate: downsamples data points to reduce noise

• niimpy.preprocessing.location.extract_features_location: feature extraction from location data

In the following, we go through analysing a subset of location data provided in StudentLife dataset.

11.2 Read data

[1]: import niimpy
from niimpy import config
import niimpy.preprocessing.location as nilo
import warnings
warnings.filterwarnings("ignore")

[2]: data = niimpy.read_csv(config.GPS_PATH, tz='Europe/Helsinki')
data.shape

[2]: (9857, 6)

There are 9857 location datapoints with 6 columns in the dataset. Let us have a quick look at the data:

[3]: data.head()

[3]: time double_latitude double_longitude
2013-03-27 06:03:29+02:00 1364357009 43.706667 -72.289097 \
2013-03-27 06:23:29+02:00 1364358209 43.706637 -72.289066
2013-03-27 06:43:25+02:00 1364359405 43.706678 -72.289018
2013-03-27 07:03:29+02:00 1364360609 43.706665 -72.289087
2013-03-27 07:23:25+02:00 1364361805 43.706808 -72.289370

double_speed user datetime
(continues on next page)

95

https://studentlife.cs.dartmouth.edu/dataset.html

Niimpy Documentation, Release dev

(continued from previous page)

2013-03-27 06:03:29+02:00 0.00 gps_u01 2013-03-27 06:03:29+02:00
2013-03-27 06:23:29+02:00 0.00 gps_u01 2013-03-27 06:23:29+02:00
2013-03-27 06:43:25+02:00 0.25 gps_u01 2013-03-27 06:43:25+02:00
2013-03-27 07:03:29+02:00 0.00 gps_u01 2013-03-27 07:03:29+02:00
2013-03-27 07:23:25+02:00 0.00 gps_u01 2013-03-27 07:23:25+02:00

The necessary columns for further analysis are double_latitude, double_longitude, double_speed, and user.
user refers to a unique identifier for a subject.

11.3 Filter data

Three different methods for filtering low-quality data points are implemented in niimpy:

• remove_disabled: removes data points whose disabled column is True.

• remove_network: removes data points whose provider column is network. This method keeps only gps-
derived data points.

• remove_zeros: removes data points close to the point <lat=0, lon=0>.

[4]: data = nilo.filter_location(data, remove_disabled=False, remove_network=False, remove_
→˓zeros=True)
data.shape

[4]: (9857, 6)

There is no such data points in this dataset; therefore the dataset does not change after this step and the number of
datapoints remains the same.

11.4 Downsample

Because GPS records are not always very accurate and they have random errors, it is a good practice to downsample
or aggregate data points which are recorded in close time windows. In other words, all the records in the same time
window are aggregated to form one GPS record associated to that time window. There are a few parameters to adjust
the aggregation setting:

• freq: represents the length of time window. This parameter follows the formatting of the pandas time offset
aliases function. For example ‘5T’ means 5 minute intervals.

• method_numerical: specifies how numerical columns should be aggregated. Options are ‘mean’, ‘median’,
‘sum’.

• method_categorical: specifies how categorical columns should be aggregated. Options are ‘first’, ‘mode’
(most frequent), ‘last’.

The aggregation is performed for each user (subject) separately.

[5]: binned_data = niimpy.util.aggregate(data, freq='5T', method_numerical='median')
binned_data = binned_data.reset_index(0).dropna()
binned_data.shape

[5]: (9755, 6)

After binning, the number of datapoints (bins) reduces to 9755.

96 Chapter 11. Demo notebook for analysing location data

https://pandas.pydata.org/docs/user_guide/timeseries.html#timeseries-offset-aliases
https://pandas.pydata.org/docs/user_guide/timeseries.html#timeseries-offset-aliases

Niimpy Documentation, Release dev

11.5 Feature extraction

Here is the list of features niimpy extracts from location data:

1. Distance based features (niimpy.preprocessing.location.location_distance_features):

Feature Description
dist_total Total distance a person traveled in meters
variance, log_variance Variance is defined as sum of variance in latitudes and longitudes
speed_average,
speed_variance, and
speed_max

Statistics of speed (m/s). Speed, if not given, can be calculated by dividing the
distance between two consequitive bins by their time difference

n_bins Number of location bins that a user recorded in dataset

2. Significant place related features (niimpy.preprocessing.location.
location_significant_place_features):

Feature Description
n_static Number of static points. Static points are defined as bins whose speed is lower than a threshold
n_moving Number of moving points. Equivalent to n_bins - n_static
n_home Number of static bins which are close to the person’s home. Home is defined the place most

visited during nights. More formally, all the locations recorded during 12 Am and 6 AM are
clusterd and the center of largest cluster is assumed to be home

max_dist_home Maximum distance from home
n_sps Bumber of significant places. All of the static bins are clusterd using DBSCAN algorithm. Each

cluster represents a Signicant Place (SP) for a user
n_rare Number of rarely visited (referred as outliers in DBSCAN)
n_transitions Number of transitions between significant places
n_top1,
n_top2,
n_top3,
n_top4, n_top5

: Number of bins in the top N cluster. In other words, n_top1 shows the number of times the
person has visited the most freqently visited place

entropy,
normalized_entropy

: Entropy of time spent in clusters. Normalized entropy is the entropy divided by the number
of clusters

[6]: import warnings
warnings.filterwarnings('ignore', category=RuntimeWarning)

extract all the available features
all_features = nilo.extract_features_location(binned_data)
all_features

[6]: n_significant_places n_sps n_static
user
gps_u00 2013-03-31 00:00:00+02:00 6 5.0 280.0 \

2013-04-30 00:00:00+03:00 10 10.0 1966.0
2013-05-31 00:00:00+03:00 15 12.0 1827.0
2013-06-30 00:00:00+03:00 1 1.0 22.0

gps_u01 2013-03-31 00:00:00+02:00 4 2.0 307.0
2013-04-30 00:00:00+03:00 4 1.0 1999.0
2013-05-31 00:00:00+03:00 2 1.0 3079.0

(continues on next page)

11.5. Feature extraction 97

Niimpy Documentation, Release dev

(continued from previous page)

n_moving n_rare n_home max_dist_home
user
gps_u00 2013-03-31 00:00:00+02:00 8.0 3.0 106.0 2.074186e+04 \

2013-04-30 00:00:00+03:00 66.0 45.0 1010.0 2.914790e+05
2013-05-31 00:00:00+03:00 76.0 86.0 1028.0 1.041741e+06
2013-06-30 00:00:00+03:00 2.0 15.0 0.0 2.035837e+04

gps_u01 2013-03-31 00:00:00+02:00 18.0 0.0 260.0 6.975303e+02
2013-04-30 00:00:00+03:00 71.0 1.0 1500.0 1.156568e+04
2013-05-31 00:00:00+03:00 34.0 1.0 45.0 3.957650e+03

n_transitions n_top1 n_top2 ... n_top5
user ...
gps_u00 2013-03-31 00:00:00+02:00 48.0 106.0 99.0 ... 18.0 \

2013-04-30 00:00:00+03:00 194.0 1016.0 668.0 ... 38.0
2013-05-31 00:00:00+03:00 107.0 1030.0 501.0 ... 46.0
2013-06-30 00:00:00+03:00 10.0 15.0 7.0 ... 0.0

gps_u01 2013-03-31 00:00:00+02:00 8.0 286.0 21.0 ... 0.0
2013-04-30 00:00:00+03:00 2.0 1998.0 1.0 ... 0.0
2013-05-31 00:00:00+03:00 2.0 3078.0 1.0 ... 0.0

entropy normalized_entropy dist_total
user
gps_u00 2013-03-31 00:00:00+02:00 5.091668 3.163631 4.132581e+05 \

2013-04-30 00:00:00+03:00 7.284903 3.163793 2.179693e+06
2013-05-31 00:00:00+03:00 6.701177 2.696752 6.986551e+06
2013-06-30 00:00:00+03:00 0.000000 0.000000 2.252893e+05

gps_u01 2013-03-31 00:00:00+02:00 3.044522 4.392317 1.328713e+04
2013-04-30 00:00:00+03:00 0.000000 0.000000 1.238429e+05
2013-05-31 00:00:00+03:00 0.000000 0.000000 1.228235e+05

n_bins speed_average speed_variance
user
gps_u00 2013-03-31 00:00:00+02:00 288.0 0.033496 0.044885 \

2013-04-30 00:00:00+03:00 2032.0 0.269932 6.129277
2013-05-31 00:00:00+03:00 1903.0 0.351280 7.590639
2013-06-30 00:00:00+03:00 24.0 0.044126 0.021490

gps_u01 2013-03-31 00:00:00+02:00 325.0 0.056290 0.073370
2013-04-30 00:00:00+03:00 2070.0 0.066961 0.629393
2013-05-31 00:00:00+03:00 3113.0 0.026392 0.261978

speed_max variance log_variance
user
gps_u00 2013-03-31 00:00:00+02:00 1.750000 0.003146 -5.761688

2013-04-30 00:00:00+03:00 33.250000 0.237133 -1.439133
2013-05-31 00:00:00+03:00 34.000000 8.288687 2.114892
2013-06-30 00:00:00+03:00 0.559017 0.014991 -4.200287

gps_u01 2013-03-31 00:00:00+02:00 2.692582 0.000004 -12.520989
2013-04-30 00:00:00+03:00 32.750000 0.000027 -10.510017
2013-05-31 00:00:00+03:00 20.250000 0.000012 -11.364454

[7 rows x 22 columns]

98 Chapter 11. Demo notebook for analysing location data

Niimpy Documentation, Release dev

[7]: # extract only distance related features
feature_functions = {

nilo.location_distance_features: {} # arguments
}
distance_features = nilo.extract_features_location(

binned_data,
feature_functions=feature_functions)

distance_features

[7]: dist_total n_bins speed_average
user
gps_u00 2013-03-31 00:00:00+02:00 4.132581e+05 288.0 0.033496 \

2013-04-30 00:00:00+03:00 2.179693e+06 2032.0 0.269932
2013-05-31 00:00:00+03:00 6.986551e+06 1903.0 0.351280
2013-06-30 00:00:00+03:00 2.252893e+05 24.0 0.044126

gps_u01 2013-03-31 00:00:00+02:00 1.328713e+04 325.0 0.056290
2013-04-30 00:00:00+03:00 1.238429e+05 2070.0 0.066961
2013-05-31 00:00:00+03:00 1.228235e+05 3113.0 0.026392

speed_variance speed_max variance
user
gps_u00 2013-03-31 00:00:00+02:00 0.044885 1.750000 0.003146 \

2013-04-30 00:00:00+03:00 6.129277 33.250000 0.237133
2013-05-31 00:00:00+03:00 7.590639 34.000000 8.288687
2013-06-30 00:00:00+03:00 0.021490 0.559017 0.014991

gps_u01 2013-03-31 00:00:00+02:00 0.073370 2.692582 0.000004
2013-04-30 00:00:00+03:00 0.629393 32.750000 0.000027
2013-05-31 00:00:00+03:00 0.261978 20.250000 0.000012

log_variance
user
gps_u00 2013-03-31 00:00:00+02:00 -5.761688

2013-04-30 00:00:00+03:00 -1.439133
2013-05-31 00:00:00+03:00 2.114892
2013-06-30 00:00:00+03:00 -4.200287

gps_u01 2013-03-31 00:00:00+02:00 -12.520989
2013-04-30 00:00:00+03:00 -10.510017
2013-05-31 00:00:00+03:00 -11.364454

The 2 rows correspond to the 2 users present in the dataset. Each column represents a feature. For example user
gps_u00 has higher variance in speeds (speed_variance) and location variance (variance) compared to the user
gps_u01.

11.6 Implementing your own features

If you want to implement a customized feature you can do so with defining a function that accepts a dataframe
and returns a dataframe or a series. The returned object should be indexed by user. Then, when calling
extract_features_location function, you add the newly implemented function to the feature_functions ar-
gument. The default feature functions implemented in niimpy are in this variable:

[8]: nilo.ALL_FEATURE_FUNCTIONS

11.6. Implementing your own features 99

Niimpy Documentation, Release dev

[8]: {<function niimpy.preprocessing.location.location_number_of_significant_places(df,␣
→˓feature_functions={})>: {'resample_args': {'rule': '1M'}},
<function niimpy.preprocessing.location.location_significant_place_features(df, feature_
→˓functions={})>: {'resample_args': {'rule': '1M'}},
<function niimpy.preprocessing.location.location_distance_features(df, feature_
→˓functions={})>: {'resample_args': {'rule': '1M'}}}

You can add your new function to the nilo.ALL_FEATURE_FUNCTIONS dictionary and call
extract_features_location function. Or if you are interested in only extracting your desired feature you
can pass a dictionary containing just that function, like here:

[9]: # customized function
def max_speed(df, feature_arg):

grouped = df.groupby('user')
return grouped['double_speed'].max()

customized_features = nilo.extract_features_location(
binned_data,
feature_functions={max_speed: {}}

)
customized_features

[9]: double_speed
user
gps_u00 34.00
gps_u01 32.75

100 Chapter 11. Demo notebook for analysing location data

CHAPTER

TWELVE

DEMO NOTEBOOK FOR ANALYZING APPLICATION DATA

12.1 Introduction

Application data refers to the information about which apps are open at a certain time. These data can reveal important
information about people’s circadian rhythm, social patterns, and activity. Application data is an event data; this means
it cannot be sampled at a regular frequency. Instead, we just have information about the events that occured. There are
two main issues with application data (1) missing data detection, and (2) privacy concerns.

Regarding missing data detection, we may never know if all events were detected and reported. Unfortunately there
is little we can do. Nevertheless, we can take into account some factors that may interfere with the correct detection
of all events (e.g. when the phone’s battery is depleated). Therefore, to correctly process application data, we need to
consider other information like the battery status of the phone. Regarding the privacy concerns, application names can
reveal too much about a subject, for example, an uncommon app use may help identify a subject. Consequently, we try
anonimizing the data by grouping the apps.

To address both of these issues, niimpy includes the function extract_features_app to clean, downsample, and
extract features from application data while taking into account factors like the battery level and naming groups. In
addition, niimpy provides a map with some of the common apps for pseudo-anonymization. This function employs
other functions to extract the following features:

• app_count: number of times an app group has been used

• app_duration: how long an app group has been used

The app module has one internal function that help classify the apps into groups.

In the following, we will analyze screen data provided by niimpy as an example to illustrate the use of application data.

12.2 2. Read data

Let’s start by reading the example data provided in niimpy. These data have already been shaped in a format that meets
the requirements of the data schema. Let’s start by importing the needed modules. Firstly we will import the niimpy
package and then we will import the module we will use (application) and give it a short name for use convenience.

[1]: import niimpy
from niimpy import config
import niimpy.preprocessing.application as app
import pandas as pd
import warnings
warnings.filterwarnings("ignore")

Now let’s read the example data provided in niimpy. The example data is in csv format, so we need to use the
read_csv function. When reading the data, we can specify the timezone where the data was collected. This will help

101

Niimpy Documentation, Release dev

us handle daylight saving times easier. We can specify the timezone with the argument tz. The output is a dataframe.
We can also check the number of rows and columns in the dataframe.

[2]: data = niimpy.read_csv(config.SINGLEUSER_AWARE_APP_PATH, tz='Europe/Helsinki')
data.shape

[2]: (132, 6)

The data was succesfully read. We can see that there are 132 datapoints with 6 columns in the dataset. However, we
do not know yet what the data really looks like, so let’s have a quick look:

[3]: data.head()

[3]: user device time \
2019-08-05 14:02:51.009999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565003e+09
2019-08-05 14:02:58.009999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565003e+09
2019-08-05 14:03:17.009999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565003e+09
2019-08-05 14:02:55.009999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565003e+09
2019-08-05 14:03:31.009999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565003e+09

application_name \
2019-08-05 14:02:51.009999872+03:00 Android System
2019-08-05 14:02:58.009999872+03:00 Android System
2019-08-05 14:03:17.009999872+03:00 Google Play Music
2019-08-05 14:02:55.009999872+03:00 Google Play Music
2019-08-05 14:03:31.009999872+03:00 Gmail

package_name \
2019-08-05 14:02:51.009999872+03:00 android
2019-08-05 14:02:58.009999872+03:00 android
2019-08-05 14:03:17.009999872+03:00 com.google.android.music
2019-08-05 14:02:55.009999872+03:00 com.google.android.music
2019-08-05 14:03:31.009999872+03:00 com.google.android.gm

datetime
2019-08-05 14:02:51.009999872+03:00 2019-08-05 14:02:51.009999872+03:00
2019-08-05 14:02:58.009999872+03:00 2019-08-05 14:02:58.009999872+03:00
2019-08-05 14:03:17.009999872+03:00 2019-08-05 14:03:17.009999872+03:00
2019-08-05 14:02:55.009999872+03:00 2019-08-05 14:02:55.009999872+03:00
2019-08-05 14:03:31.009999872+03:00 2019-08-05 14:03:31.009999872+03:00

By exploring the head of the dataframe we can form an idea of its entirety. From the data, we can see that:

• rows are observations, indexed by timestamps, i.e. each row represents that an app has been prompted to the
smartphone screen

• columns are characteristics for each observation, for example, the user whose data we are analyzing

• there is one main column: application_name, which stores the Android name for the application.

102 Chapter 12. Demo notebook for analyzing application data

Niimpy Documentation, Release dev

12.2.1 A few words on missing data

Missing data for application is difficult to detect. Firstly, this sensor is triggered by events (i.e. not sampled at a fixed
frequency). Secondly, different phones, OS, and settings change how easy it is to detect apps. Thirdly, events not
related to the application sensor may affect its behavior, e.g. battery running out. Unfortunately, we can only correct
missing data for events such as the screen turning off by using data from the screen sensor and the battery level. These
can be taken into account in niimpy if we provide the screen and battery data. We will see some examples below.

12.2.2 A few words on grouping the apps

As previously mentioned, the application name may reveal too much about a subject and privacy problems may arise.
A possible solution to this problem is to classify the apps into more generic groups. For example, apps like WhatsApp,
Signal, Telegram, etc. are commonly used for texting, so we can group them under the label texting. niimpy provides
a default map, but this should be adapted to the characteristics of the sample, since apps are available depending on
countries and populations.

12.2.3 A few words on the role of the battery and screen

As mentioned before, sometimes the screen may be OFF and these events will not be caught by the application data
sensor. For example, we can open an app and let it remain open until the phone screen turns off automatically. Another
example is when the battery is depleated and the phone is shut down automatically. Having this information is crucial
for correctly computing how long a subject used each app group. niimpy’s screen module is adapted to take into
account both, the screen and battery data. For this example, we have both, so let’s load the screen and battery data.

[4]: bat_data = niimpy.read_csv(config.MULTIUSER_AWARE_BATTERY_PATH, tz='Europe/Helsinki')
screen_data = niimpy.read_csv(config.MULTIUSER_AWARE_SCREEN_PATH, tz='Europe/Helsinki')

[5]: bat_data.head()

[5]: user device time \
2020-01-09 02:20:02.924999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:21:30.405999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:24:12.805999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:35:38.561000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:35:38.953000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09

battery_level battery_status \
2020-01-09 02:20:02.924999936+02:00 74 3
2020-01-09 02:21:30.405999872+02:00 73 3
2020-01-09 02:24:12.805999872+02:00 72 3
2020-01-09 02:35:38.561000192+02:00 72 2
2020-01-09 02:35:38.953000192+02:00 72 2

battery_health battery_adaptor \
2020-01-09 02:20:02.924999936+02:00 2 0
2020-01-09 02:21:30.405999872+02:00 2 0
2020-01-09 02:24:12.805999872+02:00 2 0
2020-01-09 02:35:38.561000192+02:00 2 0
2020-01-09 02:35:38.953000192+02:00 2 2

datetime
2020-01-09 02:20:02.924999936+02:00 2020-01-09 02:20:02.924999936+02:00

(continues on next page)

12.2. 2. Read data 103

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 02:21:30.405999872+02:00 2020-01-09 02:21:30.405999872+02:00
2020-01-09 02:24:12.805999872+02:00 2020-01-09 02:24:12.805999872+02:00
2020-01-09 02:35:38.561000192+02:00 2020-01-09 02:35:38.561000192+02:00
2020-01-09 02:35:38.953000192+02:00 2020-01-09 02:35:38.953000192+02:00

The dataframe looks fine. In this case, we are interested in the battery_status information. This is standard information
provided by Android. However, if the dataframe stores this information in a column with a different name, we can use
the argument battery_column_name and input our custom battery column name (again, we will have an example
below).

[6]: screen_data.head()

[6]: user device time \
2020-01-09 02:06:41.573999872+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578528e+09
2020-01-09 02:09:29.152000+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:09:32.790999808+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:11:41.996000+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:16:19.010999808+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09

screen_status \
2020-01-09 02:06:41.573999872+02:00 0
2020-01-09 02:09:29.152000+02:00 1
2020-01-09 02:09:32.790999808+02:00 3
2020-01-09 02:11:41.996000+02:00 0
2020-01-09 02:16:19.010999808+02:00 1

datetime
2020-01-09 02:06:41.573999872+02:00 2020-01-09 02:06:41.573999872+02:00
2020-01-09 02:09:29.152000+02:00 2020-01-09 02:09:29.152000+02:00
2020-01-09 02:09:32.790999808+02:00 2020-01-09 02:09:32.790999808+02:00
2020-01-09 02:11:41.996000+02:00 2020-01-09 02:11:41.996000+02:00
2020-01-09 02:16:19.010999808+02:00 2020-01-09 02:16:19.010999808+02:00

This dataframe looks fine too. In this case, we are interested in the screen_status information, which is also standardized
values provided by Android. The column does not need to be name “screen_status” as we can pass the name later on.
We will see an example later.

12.3 * TIP! Data format requirements (or what should our data look
like)

Data can take other shapes and formats. However, the niimpy data scheme requires it to be in a certain shape. This
means the application dataframe needs to have at least the following characteristics: 1. One row per app prompt. Each
row should store information about one app prompt only 2. Each row’s index should be a timestamp 3. There should be
at least three columns: - index: date and time when the event happened (timestamp) - user: stores the user name whose
data is analyzed. Each user should have a unique name or hash (i.e. one hash for each unique user) - application_name:
stores the Android application name 4. Columns additional to those listed in item 3 are allowed 5. The names of the
columns do not need to be exactly “user”, and “application_name” as we can pass our own names in an argument (to
be explained later).

Below is an example of a dataframe that complies with these minimum requirements

104 Chapter 12. Demo notebook for analyzing application data

Niimpy Documentation, Release dev

[7]: example_dataschema = data[['user','application_name']]
example_dataschema.head(3)

[7]: user application_name
2019-08-05 14:02:51.009999872+03:00 iGyXetHE3S8u Android System
2019-08-05 14:02:58.009999872+03:00 iGyXetHE3S8u Android System
2019-08-05 14:03:17.009999872+03:00 iGyXetHE3S8u Google Play Music

Similarly, if we employ screen and battery data, we need to fulfill minimum data scheme requirements. We will briefly
show examples of these dataframes that comply with the minimum requirements.

[8]: example_screen_dataschema = screen_data[['user','screen_status']]
example_screen_dataschema.head(3)

[8]: user screen_status
2020-01-09 02:06:41.573999872+02:00 jd9INuQ5BBlW 0
2020-01-09 02:09:29.152000+02:00 jd9INuQ5BBlW 1
2020-01-09 02:09:32.790999808+02:00 jd9INuQ5BBlW 3

[9]: example_battery_dataschema = bat_data[['user','battery_status']]
example_battery_dataschema.head(3)

[9]: user battery_status
2020-01-09 02:20:02.924999936+02:00 jd9INuQ5BBlW 3
2020-01-09 02:21:30.405999872+02:00 jd9INuQ5BBlW 3
2020-01-09 02:24:12.805999872+02:00 jd9INuQ5BBlW 3

12.4 4. Extracting features

There are two ways to extract features. We could use each function separately or we could use niimpy’s ready-made
wrapper. Both ways will require us to specify arguments to pass to the functions/wrapper in order to customize the way
the functions work. These arguments are specified in dictionaries. Let’s first understand how to extract features using
stand-alone functions.

We can use niimpy’s functions to compute communication features. Each function will require two inputs: - (manda-
tory) dataframe that must comply with the minimum requirements (see ‘* TIP! Data requirements above) - (optional)
an argument dictionary for stand-alone functions

12.4.1 4.1.1 The argument dictionary for stand-alone functions (or how we specify
the way a function works)

In this dictionary, we can input two main features to customize the way a stand-alone function works: - the name of
the columns to be preprocessed: Since the dataframe may have different columns, we need to specify which column
has the data we would like to be preprocessed. To do so, we can simply pass the name of the column to the argument
app_column_name.

• the way we resample: resampling options are specified in niimpy as a dictionary. niimpy’s resampling and
aggregating relies on pandas.DataFrame.resample, so mastering the use of this pandas function will help
us greatly in niimpy’s preprocessing. Please familiarize yourself with the pandas resample function before
continuing. Briefly, to use the pandas.DataFrame.resample function, we need a rule. This rule states the
intervals we would like to use to resample our data (e.g., 15-seconds, 30-minutes, 1-hour). Neverthless, we
can input more details into the function to specify the exact sampling we would like. For example, we could
use the close argument if we would like to specify which side of the interval is closed, or we could use the offset

12.4. 4. Extracting features 105

Niimpy Documentation, Release dev

argument if we would like to start our binning with an offset, etc. There are plenty of options to use this command,
so we strongly recommend having pandas.DataFrame.resample documentation at hand. All features for the
pandas.DataFrame.resample will be specified in a dictionary where keys are the arguments’ names for the
pandas.DataFrame.resample function, and the dictionary’s values are the values for each of these selected
arguments. This dictionary will be passed as a value to the key resample_args in niimpy.

Let’s see some basic examples of these dictionaries:

[10]: feature_dict1:{"app_column_name":"application_name","resample_args":{"rule":"1D"}}
feature_dict2:{"app_column_name":"other_name", "screen_column_name":"screen_name",
→˓"resample_args":{"rule":"45T","origin":"end"}}

Here, we have two basic feature dictionaries.

• feature_dict1 will be used to analyze the data stored in the column application_name in our dataframe.
The data will be binned in one day periods

• feature_dict2will be used to analyze the data stored in the column other_name in our dataframe. In addition,
we will provide some screen data in the column “screen_name”. The data will be binned in 45-minutes bins, but
the binning will start from the last timestamp in the dataframe.

Default values: if no arguments are passed, niimpy’s default values are “application_name” for the
app_column_name, “screen_status” for the screen_column_name, and “battery_status” for the battery_column_name.
We will also use the default 30-min aggregation bins.

12.4.2 4.1.2 Using the functions

Now that we understand how the functions are customized, it is time we compute our first application feature. Suppose
that we are interested in extracting the number of times each app group has been used within 1-minutes bins. We will
need niimpy’s app_count function, the data, and we will also need to create a dictionary to customize our function.
Let’s create the dictionary first

[11]: function_features={"app_column_name":"application_name","resample_args":{"rule":"1T"}}

Now let’s use the function to preprocess the data.

[12]: my_app_count = app.app_count(data, bat_data, screen_data, function_features)

my_app_count is a multiindex dataframe, where the first level is the user, and the second level is the app group. Let’s
look at some values.

[13]: my_app_count.head()

[13]: count
user app_group datetime
iGyXetHE3S8u comm 2019-08-05 14:02:00+03:00 28

2019-08-05 14:03:00+03:00 58
leisure 2019-08-05 14:02:00+03:00 3

2019-08-05 14:03:00+03:00 17
na 2019-08-05 14:02:00+03:00 10

We see that the bins are indeed 1-minutes bins, however, they are adjusted to fixed, predetermined intervals, i.e. the bin
does not start on the time of the first datapoint. Instead, pandas starts the binning at 00:00:00 of everyday and counts
1-minutes intervals from there.

If we want the binning to start from the first datapoint in our dataset, we need the origin parameter and a for loop.

106 Chapter 12. Demo notebook for analyzing application data

Niimpy Documentation, Release dev

[14]: users = list(data['user'].unique())
results = []
for user in users:

start_time = data[data["user"]==user].index.min()
function_features={"app_column_name":"application_name","resample_args":{"rule":"1T",

→˓"origin":start_time}}
results.append(app.app_count(data[data["user"]==user],bat_data[bat_data["user

→˓"]==user], screen_data[screen_data["user"]==user], function_features))
my_app_count = pd.concat(results)

[15]: my_app_count

[15]: count
user app_group datetime
iGyXetHE3S8u comm 2019-08-05 14:02:42.009999872+03:00 86

leisure 2019-08-05 14:02:42.009999872+03:00 20
na 2019-08-05 14:02:42.009999872+03:00 19
work 2019-08-05 14:02:42.009999872+03:00 7

Compare the timestamps and notice the small difference in this example. In the cell 21, the first timestamp is at 14:02:00,
whereas in the new app_count, the first timestamp is at 14:02:42

The functions can also be called in absence of battery or screen data. In this case, simply input an empty dataframe in
the second or third position of the function. For example,

[16]: empty_bat = pd.DataFrame()
empty_screen = pd.DataFrame()
no_bat = app.app_count(data, empty_bat, screen_data, function_features) #no battery␣
→˓information
no_screen = app.app_count(data, bat_data, empty_screen, function_features) #no screen␣
→˓information
no_bat_no_screen = app.app_count(data, empty_bat, empty_screen, function_features) #no␣
→˓battery and no screen information

[17]: no_bat.head()

[17]: count
user app_group datetime
iGyXetHE3S8u comm 2019-08-05 14:02:42.009999872+03:00 86

leisure 2019-08-05 14:02:42.009999872+03:00 20
na 2019-08-05 14:02:42.009999872+03:00 19
work 2019-08-05 14:02:42.009999872+03:00 7

[18]: no_screen.head()

[18]: count
user app_group datetime
iGyXetHE3S8u comm 2019-08-05 14:02:42.009999872+03:00 86

leisure 2019-08-05 14:02:42.009999872+03:00 20
na 2019-08-05 14:02:42.009999872+03:00 19
off 2019-08-07 10:36:42.009999872+03:00 2
work 2019-08-05 14:02:42.009999872+03:00 7

We see some small differences between these two dataframes. For example, the no_screen dataframe includes the
app_group “off”, as it has taken into account the battery data and knows when the phone has been shut down.

12.4. 4. Extracting features 107

Niimpy Documentation, Release dev

4.2 Extract features using the wrapper

We can use niimpy’s ready-made wrapper to extract one or several features at the same time. The wrapper will require
two inputs: - (mandatory) dataframe that must comply with the minimum requirements (see ‘* TIP! Data requirements
above) - (optional) an argument dictionary for wrapper

12.4.3 4.2.1 The argument dictionary for wrapper (or how we specify the way the
wrapper works)

This argument dictionary will use dictionaries created for stand-alone functions. If you do not know how to create
those argument dictionaries, please read the section 4.1.1 The argument dictionary for stand-alone functions (or
how we specify the way a function works) first.

The wrapper dictionary is simple. Its keys are the names of the features we want to compute. Its values are argument
dictionaries created for each stand-alone function we will employ. Let’s see some examples of wrapper dictionaries:

[19]: wrapper_features1 = {app.app_count:{"app_column_name":"application_name", "resample_args
→˓":{"rule":"1T"}},

app.app_duration:{"app_column_name":"some_name", "screen_column_name":
→˓"screen_name", "battery_column_name":"battery_name", "resample_args":{"rule":"1T"}}}

• wrapper_features1 will be used to analyze two features, app_count and app_duration. For the feature
app_count, we will use the data stored in the column application_name in our dataframe and the data will be
binned in one-minute periods. For the feature app_duration, we will use the data stored in the column some_name
in our dataframe and the data will be binned in one day periods. In addition, we will also employ screen and
battery data which are stored in the columns screen_name and battery_name.

[20]: wrapper_features2 = {app.app_count:{"app_column_name":"application_name", "resample_args
→˓":{"rule":"1T", "offset":"15S"}},

app.app_duration:{"app_column_name":"some_name", "screen_column_name":
→˓"screen_name", "battery_column_name":"battery_name", "resample_args":{"rule":"30S"}}}

• wrapper_features2 will be used to analyze two features, app_count and app_duration. For the feature
app_count, we will use the data stored in the column application_name in our dataframe and the data will be
binned in one-minute periods with a 15-seconds offset. For the feature app_duration, we will use the data stored
in the column some_name in our dataframe and the data will be binned in 30-second periods. In addition, we
will also employ screen and battery data which are stored in the columns screen_name and battery_name.

Default values: if no arguments are passed, niimpy’s default values are “application_name” for the
app_column_name, “screen_status” for the screen_column_name, “battery_status” for the battery_column_name, and
30-min aggregation bins. Moreover, the wrapper will compute all the available functions in absence of the argument
dictionary. Similarly to the use of functions, we may input empty dataframes if we do not have screen or battery data.

12.4.4 4.2.2 Using the wrapper

Now that we understand how the wrapper is customized, it is time we compute our first application feature using the
wrapper. Suppose that we are interested in extracting the call total duration every 30 seconds. We will need niimpy’s
extract_features_apps function, the data, and we will also need to create a dictionary to customize our function.
Let’s create the dictionary first

[21]: wrapper_features1 = {app.app_count:{"app_column_name":"application_name", "resample_args
→˓":{"rule":"30S"}}}

Now let’s use the wrapper

108 Chapter 12. Demo notebook for analyzing application data

Niimpy Documentation, Release dev

[22]: results_wrapper = app.extract_features_app(data, bat_data, screen_data, features=wrapper_
→˓features1)
results_wrapper.head(5)

computing <function app_count at 0x7f5233babee0>...

[22]: count
user app_group datetime
iGyXetHE3S8u comm 2019-08-05 14:02:30+03:00 28

2019-08-05 14:03:00+03:00 34
2019-08-05 14:03:30+03:00 24

leisure 2019-08-05 14:02:30+03:00 3
2019-08-05 14:03:00+03:00 15

Our first attempt was succesful. Now, let’s try something more. Let’s assume we want to compute the app_count and
app_duration in 20-seconds bins. Moreover, let’s assume we do not want to use the screen or battery data this time.
Note that the app_duration values are in seconds.

[23]: wrapper_features2 = {app.app_count:{"app_column_name":"application_name", "resample_args
→˓":{"rule":"20S"}},

app.app_duration:{"app_column_name":"application_name", "resample_
→˓args":{"rule":"20S"}}}
results_wrapper = app.extract_features_app(data, empty_bat, empty_screen,␣
→˓features=wrapper_features2)
results_wrapper.head(5)

computing <function app_count at 0x000001D47C314B80>...
computing <function app_duration at 0x000001D47C314C10>...

[23]: count duration
user app_group datetime
iGyXetHE3S8u comm 2019-08-05 14:02:40+03:00 28 600.0

2019-08-05 14:03:00+03:00 20 66.0
2019-08-05 14:03:20+03:00 31 -719.0
2019-08-05 14:03:40+03:00 7 -206.0

leisure 2019-08-05 14:02:40+03:00 3 93.0

Great! Another successful attempt. We see from the results that more columns were added with the required calcula-
tions. We also see that some durations are in negative numbers, this may be due to the lack of screen and battery data.
This is how the wrapper works when all features are computed with the same bins. Now, let’s see how the wrapper
performs when each function has different binning requirements. Let’s assume we need to compute the app_count
every 20 seconds, and the app_duration every 10 seconds with an offset of 5 seconds.

[24]: wrapper_features3 = {app.app_count:{"app_column_name":"application_name", "resample_args
→˓":{"rule":"20S"}},

app.app_duration:{"app_column_name":"application_name", "resample_
→˓args":{"rule":"10S", "offset":"5S"}}}
results_wrapper = app.extract_features_app(data, bat_data, screen_data, features=wrapper_
→˓features3)
results_wrapper.head(5)

computing <function app_count at 0x000001D47C314B80>...
computing <function app_duration at 0x000001D47C314C10>...

[24]: count duration
user app_group datetime

(continues on next page)

12.4. 4. Extracting features 109

Niimpy Documentation, Release dev

(continued from previous page)

iGyXetHE3S8u comm 2019-08-05 14:02:40+03:00 28.0 NaN
2019-08-05 14:03:00+03:00 20.0 NaN
2019-08-05 14:03:20+03:00 31.0 NaN
2019-08-05 14:03:40+03:00 7.0 NaN

leisure 2019-08-05 14:02:40+03:00 3.0 NaN

[25]: results_wrapper.tail(5)

[25]: count duration
user app_group datetime
iGyXetHE3S8u work 2019-08-05 14:02:45+03:00 NaN 1.0

2019-08-05 14:02:55+03:00 NaN 3.0
2019-08-05 14:03:05+03:00 NaN 0.0
2019-08-05 14:03:15+03:00 NaN 2.0
2019-08-05 14:03:25+03:00 NaN 0.0

The output is once again a dataframe. In this case, two aggregations are shown. The first one is the 20-seconds
aggregation computed for the app_count feature (head). The second one is the 10-seconds aggregation period with
5-seconds offset for the app_duration (tail). Because the app_count feature is not required to be aggregated every
10 seconds, the aggregation timestamps have a NaN value. Similarly, because the app_duration is not required to be
aggregated in 20-seconds windows, its values are NaN for all subjects.

12.4.5 4.2.3 Wrapper and its default option

The default option will compute all features in 30-minute aggregation windows. To use the extract_features_apps
function with its default options, simply call the function.

[26]: default = app.extract_features_app(data, bat_data, screen_data, features=None)

computing <function app_count at 0x000001D47C314B80>...
computing <function app_duration at 0x000001D47C314C10>...

The function prints the computed features so you can track its process. Now, let’s have a look at the outputs

[27]: default.head()

[27]: count duration
user app_group datetime
iGyXetHE3S8u comm 2019-08-05 14:00:00+03:00 86 37.0

leisure 2019-08-05 14:00:00+03:00 20 7.0
na 2019-08-05 14:00:00+03:00 19 9.0
work 2019-08-05 14:00:00+03:00 7 6.0

110 Chapter 12. Demo notebook for analyzing application data

Niimpy Documentation, Release dev

12.5 5. Implementing own features

If none of the provided functions suits well, We can implement our own customized features easily. To do so, we need
to define a function that accepts a dataframe and returns a dataframe. The returned object should be indexed by user
and app_groups (multiindex). To make the feature readily available in the default options, we need add the app prefix
to the new function (e.g. app_my-new-feature). Let’s assume we need a new function that computes the maximum
duration. Let’s first define the function.

[28]: import numpy as np
def app_max_duration(df, bat, screen, feature_functions=None):

if not "group_map" in feature_functions.keys():
feature_functions['group_map'] = app.MAP_APP

if not "resample_args" in feature_functions.keys():
feature_functions["resample_args"] = {"rule":"30T"}

df2 = app.classify_app(df, feature_functions)
df2['duration']=np.nan
df2['duration']=df2['datetime'].diff()
df2['duration'] = df2['duration'].shift(-1)
thr = pd.Timedelta('10 hours')
df2 = df2[~(df2.duration>thr)]
df2 = df2[~(df2.duration>thr)]
df2["duration"] = df2["duration"].dt.total_seconds()

df2.dropna(inplace=True)

if len(df2)>0:
df2['datetime'] = pd.to_datetime(df2['datetime'])
df2.set_index('datetime', inplace=True)
result = df2.groupby(["user","app_group"])["duration"].resample(**feature_

→˓functions["resample_args"]).max()

return result

Then, we can call our new function in the stand-alone way or using the extract_features_app function. Because
the stand-alone way is the common way to call functions in python, we will not show it. Instead, we will show how to
integrate this new function to the wrapper. Let’s read again the data and assume we want the default behavior of the
wrapper.

[29]: customized_features = app.extract_features_app(data, bat_data, screen_data, features=
→˓{app_max_duration: {}})

computing <function app_max_duration at 0x000001D47C44B130>...

[30]: customized_features.head()

[30]: duration
user app_group datetime
iGyXetHE3S8u comm 2019-08-05 14:00:00+03:00 59.0

leisure 2019-08-05 14:00:00+03:00 36.0
na 2019-08-05 14:00:00+03:00 53.0
work 2019-08-05 14:00:00+03:00 19.0

12.5. 5. Implementing own features 111

Niimpy Documentation, Release dev

[]:

112 Chapter 12. Demo notebook for analyzing application data

CHAPTER

THIRTEEN

DEMO NOTEBOOK FOR ANALYZING AUDIO DATA

13.1 Introduction

Audio data - as recorded by smartphones or other portable devices - can carry important information about individuals’
environments. This may give insights about the activity, sleep, and social interaction. However, using these data can
be tricky due to privacy concerns, for example, conversations are highly identifiable. A possible solution is to compute
more general characteristics (e.g. frequency) and use those instead to extract features. To address this last part, niimpy
includes the function extract_features_audio to clean, downsample, and extract features from audio snippets that
have been already anonymized. This function employs other functions to extract the following features:

• audio_count_silent: number of times when there has been some sound in the environment

• audio_count_speech: number of times when there has been some sound in the environment that matches the
range of human speech frequency (65 - 255Hz)

• audio_count_loud: number of times when there has been some sound in the environment above 70dB

• audio_min_freq: minimum frequency of the recorded audio snippets

• audio_max_freq: maximum frequency of the recorded audio snippets

• audio_mean_freq: mean frequency of the recorded audio snippets

• audio_median_freq: median frequency of the recorded audio snippets

• audio_std_freq: standard deviation of the frequency of the recorded audio snippets

• audio_min_db: minimum decibels of the recorded audio snippets

• audio_max_db: maximum decibels of the recorded audio snippets

• audio_mean_db: mean decibels of the recorded audio snippets

• audio_median_db: median decibels of the recorded audio snippets

• audio_std_db: standard deviations of the recorded audio snippets decibels

In the following, we will analyze audio snippets provided by niimpy as an example to illustrate the use of niimpy’s
audio preprocessing functions.

113

Niimpy Documentation, Release dev

13.2 2. Read data

Let’s start by reading the example data provided in niimpy. These data have already been shaped in a format that meets
the requirements of the data schema. Let’s start by importing the needed modules. Firstly we will import the niimpy
package and then we will import the module we will use (audio) and give it a short name for use convinience.

[1]: import niimpy
from niimpy import config
import niimpy.preprocessing.audio as au
import pandas as pd
import warnings
warnings.filterwarnings("ignore")

Now let’s read the example data provided in niimpy. The example data is in csv format, so we need to use the
read_csv function. When reading the data, we can specify the timezone where the data was collected. This will help
us handle daylight saving times easier. We can specify the timezone with the argument tz. The output is a dataframe.
We can also check the number of rows and columns in the dataframe.

[2]: data = niimpy.read_csv(config.MULTIUSER_AWARE_AUDIO_PATH, tz='Europe/Helsinki')
data.shape

[2]: (33, 7)

The data was succesfully read. We can see that there are 33 datapoints with 7 columns in the dataset. However, we do
not know yet what the data really looks like, so let’s have a quick look:

[3]: data.head()

[3]: user device time \
2020-01-09 02:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:38:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 03:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578532e+09
2020-01-09 03:38:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578534e+09
2020-01-09 04:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578536e+09

is_silent double_decibels \
2020-01-09 02:08:03.896000+02:00 0 84
2020-01-09 02:38:03.896000+02:00 0 89
2020-01-09 03:08:03.896000+02:00 0 99
2020-01-09 03:38:03.896000+02:00 0 77
2020-01-09 04:08:03.896000+02:00 0 80

double_frequency \
2020-01-09 02:08:03.896000+02:00 4935
2020-01-09 02:38:03.896000+02:00 8734
2020-01-09 03:08:03.896000+02:00 1710
2020-01-09 03:38:03.896000+02:00 9054
2020-01-09 04:08:03.896000+02:00 12265

datetime
2020-01-09 02:08:03.896000+02:00 2020-01-09 02:08:03.896000+02:00
2020-01-09 02:38:03.896000+02:00 2020-01-09 02:38:03.896000+02:00
2020-01-09 03:08:03.896000+02:00 2020-01-09 03:08:03.896000+02:00
2020-01-09 03:38:03.896000+02:00 2020-01-09 03:38:03.896000+02:00
2020-01-09 04:08:03.896000+02:00 2020-01-09 04:08:03.896000+02:00

114 Chapter 13. Demo notebook for analyzing audio data

Niimpy Documentation, Release dev

[4]: data.tail()

[4]: user device time \
2019-08-13 15:02:17.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565698e+09
2019-08-13 15:28:59.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565699e+09
2019-08-13 15:59:01.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565701e+09
2019-08-13 16:29:03.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565703e+09
2019-08-13 16:59:05.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565705e+09

is_silent double_decibels \
2019-08-13 15:02:17.657999872+03:00 1 44
2019-08-13 15:28:59.657999872+03:00 1 49
2019-08-13 15:59:01.657999872+03:00 0 55
2019-08-13 16:29:03.657999872+03:00 0 76
2019-08-13 16:59:05.657999872+03:00 0 84

double_frequency \
2019-08-13 15:02:17.657999872+03:00 2914
2019-08-13 15:28:59.657999872+03:00 7195
2019-08-13 15:59:01.657999872+03:00 91
2019-08-13 16:29:03.657999872+03:00 3853
2019-08-13 16:59:05.657999872+03:00 7419

datetime
2019-08-13 15:02:17.657999872+03:00 2019-08-13 15:02:17.657999872+03:00
2019-08-13 15:28:59.657999872+03:00 2019-08-13 15:28:59.657999872+03:00
2019-08-13 15:59:01.657999872+03:00 2019-08-13 15:59:01.657999872+03:00
2019-08-13 16:29:03.657999872+03:00 2019-08-13 16:29:03.657999872+03:00
2019-08-13 16:59:05.657999872+03:00 2019-08-13 16:59:05.657999872+03:00

By exploring the head and tail of the dataframe we can form an idea of its entirety. From the data, we can see that:

• rows are observations, indexed by timestamps, i.e. each row represents a snippet that has been recorded at a given
time and date

• columns are characteristics for each observation, for example, the user whose data we are analyzing

• there are at least two different users in the dataframe

• there are two main columns: double_decibels and double_frequency.

In fact, we can check the first three elements for each user

[5]: data.drop_duplicates(['user','time']).groupby('user').head(3)

[5]: user device time \
2020-01-09 02:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:38:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 03:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578532e+09
2019-08-13 07:28:27.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565671e+09
2019-08-13 07:58:29.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565672e+09
2019-08-13 08:28:31.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565674e+09

is_silent double_decibels \
2020-01-09 02:08:03.896000+02:00 0 84
2020-01-09 02:38:03.896000+02:00 0 89

(continues on next page)

13.2. 2. Read data 115

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 03:08:03.896000+02:00 0 99
2019-08-13 07:28:27.657999872+03:00 0 51
2019-08-13 07:58:29.657999872+03:00 0 90
2019-08-13 08:28:31.657999872+03:00 0 81

double_frequency \
2020-01-09 02:08:03.896000+02:00 4935
2020-01-09 02:38:03.896000+02:00 8734
2020-01-09 03:08:03.896000+02:00 1710
2019-08-13 07:28:27.657999872+03:00 7735
2019-08-13 07:58:29.657999872+03:00 13609
2019-08-13 08:28:31.657999872+03:00 7690

datetime
2020-01-09 02:08:03.896000+02:00 2020-01-09 02:08:03.896000+02:00
2020-01-09 02:38:03.896000+02:00 2020-01-09 02:38:03.896000+02:00
2020-01-09 03:08:03.896000+02:00 2020-01-09 03:08:03.896000+02:00
2019-08-13 07:28:27.657999872+03:00 2019-08-13 07:28:27.657999872+03:00
2019-08-13 07:58:29.657999872+03:00 2019-08-13 07:58:29.657999872+03:00
2019-08-13 08:28:31.657999872+03:00 2019-08-13 08:28:31.657999872+03:00

Sometimes the data may come in a disordered manner, so just to make sure, let’s order the dataframe and compare
the results. We will use the columns “user” and “datetime” since we would like to order the information according to
firstly, participants, and then, by time in order of happening. Luckily, in our dataframe, the index and datetime are the
same.

[6]: data.sort_values(by=['user', 'datetime'], inplace=True)
data.drop_duplicates(['user','time']).groupby('user').head(3)

[6]: user device time \
2019-08-13 07:28:27.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565671e+09
2019-08-13 07:58:29.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565672e+09
2019-08-13 08:28:31.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565674e+09
2020-01-09 02:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:38:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 03:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578532e+09

is_silent double_decibels \
2019-08-13 07:28:27.657999872+03:00 0 51
2019-08-13 07:58:29.657999872+03:00 0 90
2019-08-13 08:28:31.657999872+03:00 0 81
2020-01-09 02:08:03.896000+02:00 0 84
2020-01-09 02:38:03.896000+02:00 0 89
2020-01-09 03:08:03.896000+02:00 0 99

double_frequency \
2019-08-13 07:28:27.657999872+03:00 7735
2019-08-13 07:58:29.657999872+03:00 13609
2019-08-13 08:28:31.657999872+03:00 7690
2020-01-09 02:08:03.896000+02:00 4935
2020-01-09 02:38:03.896000+02:00 8734
2020-01-09 03:08:03.896000+02:00 1710

(continues on next page)

116 Chapter 13. Demo notebook for analyzing audio data

Niimpy Documentation, Release dev

(continued from previous page)

datetime
2019-08-13 07:28:27.657999872+03:00 2019-08-13 07:28:27.657999872+03:00
2019-08-13 07:58:29.657999872+03:00 2019-08-13 07:58:29.657999872+03:00
2019-08-13 08:28:31.657999872+03:00 2019-08-13 08:28:31.657999872+03:00
2020-01-09 02:08:03.896000+02:00 2020-01-09 02:08:03.896000+02:00
2020-01-09 02:38:03.896000+02:00 2020-01-09 02:38:03.896000+02:00
2020-01-09 03:08:03.896000+02:00 2020-01-09 03:08:03.896000+02:00

Ok, it seems like our dataframe was in order. We can start extracting features. However, we need to understand the
data format requirements first.

13.3 * TIP! Data format requirements (or what should our data look
like)

Data can take other shapes and formats. However, the niimpy data schema requires it to be in a certain shape. This
means the dataframe needs to have at least the following characteristics: 1. One row per call. Each row should store
information about one call only 2. Each row’s index should be a timestamp 3. The following five columns are required:
- index: date and time when the event happened (timestamp) - user: stores the user name whose data is analyzed.
Each user should have a unique name or hash (i.e. one hash for each unique user) - is_silent: stores whether the
decibel level is above a set threshold (usually 50dB) - double_decibels: stores the decibels of the recorded snippet
- double_frequency: the frequency of the recorded snippet in Hz - NOTE: most of our audio examples come from
data recorded with the Aware Framework, if you want to know more about the frequency and decibels, please read
https://github.com/denzilferreira/com.aware.plugin.ambient_noise 4. Additional columns are allowed. 5. The names
of the columns do not need to be exactly “user”, “is_silent”, “double_decibels” or “double_frequency” as we can pass
our own names in an argument (to be explained later).

Below is an example of a dataframe that complies with these minimum requirements

[7]: example_dataschema = data[['user','is_silent','double_decibels','double_frequency']]
example_dataschema.head(3)

[7]: user is_silent double_decibels \
2019-08-13 07:28:27.657999872+03:00 iGyXetHE3S8u 0 51
2019-08-13 07:58:29.657999872+03:00 iGyXetHE3S8u 0 90
2019-08-13 08:28:31.657999872+03:00 iGyXetHE3S8u 0 81

double_frequency
2019-08-13 07:28:27.657999872+03:00 7735
2019-08-13 07:58:29.657999872+03:00 13609
2019-08-13 08:28:31.657999872+03:00 7690

13.3. * TIP! Data format requirements (or what should our data look like) 117

https://github.com/denzilferreira/com.aware.plugin.ambient_noise

Niimpy Documentation, Release dev

13.4 4. Extracting features

There are two ways to extract features. We could use each function separately or we could use niimpy’s ready-made
wrapper. Both ways will require us to specify arguments to pass to the functions/wrapper in order to customize the way
the functions work. These arguments are specified in dictionaries. Let’s first understand how to extract features using
stand-alone functions.

13.4.1 4.1 Extract features using stand-alone functions

We can use niimpy’s functions to compute communication features. Each function will require two inputs: - (manda-
tory) dataframe that must comply with the minimum requirements (see ‘* TIP! Data requirements above) - (optional)
an argument dictionary for stand-alone functions

4.1.1 The argument dictionary for stand-alone functions (or how we specify the way a function works)

In this dictionary, we can input two main features to customize the way a stand-alone function works: - the name of
the columns to be preprocessed: Since the dataframe may have different columns, we need to specify which column
has the data we would like to be preprocessed. To do so, we can simply pass the name of the column to the argument
audio_column_name.

• the way we resample: resampling options are specified in niimpy as a dictionary. niimpy’s resampling and
aggregating relies on pandas.DataFrame.resample, so mastering the use of this pandas function will help
us greatly in niimpy’s preprocessing. Please familiarize yourself with the pandas resample function before
continuing. Briefly, to use the pandas.DataFrame.resample function, we need a rule. This rule states the
intervals we would like to use to resample our data (e.g., 15-seconds, 30-minutes, 1-hour). Neverthless, we
can input more details into the function to specify the exact sampling we would like. For example, we could
use the close argument if we would like to specify which side of the interval is closed, or we could use the offset
argument if we would like to start our binning with an offset, etc. There are plenty of options to use this command,
so we strongly recommend having pandas.DataFrame.resample documentation at hand. All features for the
pandas.DataFrame.resample will be specified in a dictionary where keys are the arguments’ names for the
pandas.DataFrame.resample, and the dictionary’s values are the values for each of these selected arguments.
This dictionary will be passed as a value to the key resample_args in niimpy.

Let’s see some basic examples of these dictionaries:

[8]: feature_dict1:{"audio_column_name":"double_frequency","resample_args":{"rule":"1D"}}
feature_dict2:{"audio_column_name":"random_name","resample_args":{"rule":"30T"}}
feature_dict3:{"audio_column_name":"other_name","resample_args":{"rule":"45T","origin":
→˓"end"}}

Here, we have three basic feature dictionaries.

• feature_dict1 will be used to analyze the data stored in the column double_frequency in our dataframe.
The data will be binned in one day periods

• feature_dict2 will be used to analyze the data stored in the column random_name in our dataframe. The data
will be aggregated in 30-minutes bins

• feature_dict3 will be used to analyze the data stored in the column other_name in our dataframe. The data
will be binned in 45-minutes bins, but the binning will start from the last timestamp in the dataframe.

Default values: if no arguments are passed, niimpy’s will aggregate the data in 30-min bins, and will select the
audio_column_name according to the most suitable column. For example, if we are computing the minimum frequency,
niimpy will select double_frquency as the column name.

118 Chapter 13. Demo notebook for analyzing audio data

Niimpy Documentation, Release dev

4.1.2 Using the functions

Now that we understand how the functions are customized, it is time we compute our first audio feature. Suppose
that we are interested in extracting the total number of times our recordings were loud every 50 minutes. We will
need niimpy’s audio_count_loud function, the data, and we will also need to create a dictionary to customize our
function. Let’s create the dictionary first

[9]: function_features={"audio_column_name":"double_decibels","resample_args":{"rule":"50T"}}

Now let’s use the function to preprocess the data.

[10]: my_loud_times = au.audio_count_loud(data, function_features)

my_loud_times is a multiindex dataframe, where the first level is the user, and the second level is the aggregated
timestamp. Let’s look at some values for one of the subjects.

[11]: my_loud_times.xs("jd9INuQ5BBlW", level="user")

[11]: audio_count_loud
2020-01-09 01:40:00+02:00 1
2020-01-09 02:30:00+02:00 2
2020-01-09 03:20:00+02:00 2
2020-01-09 04:10:00+02:00 0
2020-01-09 05:00:00+02:00 1
2020-01-09 05:50:00+02:00 1
2020-01-09 06:40:00+02:00 1
2020-01-09 07:30:00+02:00 0
2020-01-09 08:20:00+02:00 1
2020-01-09 09:10:00+02:00 1
2020-01-09 10:00:00+02:00 2

Let’s remember how the original data looks like for this subject

[12]: data[data["user"]=="jd9INuQ5BBlW"].head(7)

[12]: user device time \
2020-01-09 02:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:38:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 03:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578532e+09
2020-01-09 03:38:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578534e+09
2020-01-09 04:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578536e+09
2020-01-09 04:38:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578537e+09
2020-01-09 05:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578539e+09

is_silent double_decibels \
2020-01-09 02:08:03.896000+02:00 0 84
2020-01-09 02:38:03.896000+02:00 0 89
2020-01-09 03:08:03.896000+02:00 0 99
2020-01-09 03:38:03.896000+02:00 0 77
2020-01-09 04:08:03.896000+02:00 0 80
2020-01-09 04:38:03.896000+02:00 0 52
2020-01-09 05:08:03.896000+02:00 0 63

double_frequency \
2020-01-09 02:08:03.896000+02:00 4935

(continues on next page)

13.4. 4. Extracting features 119

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 02:38:03.896000+02:00 8734
2020-01-09 03:08:03.896000+02:00 1710
2020-01-09 03:38:03.896000+02:00 9054
2020-01-09 04:08:03.896000+02:00 12265
2020-01-09 04:38:03.896000+02:00 7281
2020-01-09 05:08:03.896000+02:00 14408

datetime
2020-01-09 02:08:03.896000+02:00 2020-01-09 02:08:03.896000+02:00
2020-01-09 02:38:03.896000+02:00 2020-01-09 02:38:03.896000+02:00
2020-01-09 03:08:03.896000+02:00 2020-01-09 03:08:03.896000+02:00
2020-01-09 03:38:03.896000+02:00 2020-01-09 03:38:03.896000+02:00
2020-01-09 04:08:03.896000+02:00 2020-01-09 04:08:03.896000+02:00
2020-01-09 04:38:03.896000+02:00 2020-01-09 04:38:03.896000+02:00
2020-01-09 05:08:03.896000+02:00 2020-01-09 05:08:03.896000+02:00

We see that the bins are indeed 50-minutes bins, however, they are adjusted to fixed, predetermined intervals, i.e. the
bin does not start on the time of the first datapoint. Instead, pandas starts the binning at 00:00:00 of everyday and
counts 50-minutes intervals from there.

If we want the binning to start from the first datapoint in our dataset, we need the origin parameter and a for loop.

[13]: users = list(data['user'].unique())
results = []
for user in users:

start_time = data[data["user"]==user].index.min()
function_features={"audio_column_name":"double_decibels","resample_args":{"rule":"50T

→˓","origin":start_time}}
results.append(au.audio_count_loud(data[data["user"]==user], function_features))

my_loud_times = pd.concat(results)

[14]: my_loud_times

[14]: audio_count_loud
user
iGyXetHE3S8u 2019-08-13 07:28:27.657999872+03:00 1

2019-08-13 08:18:27.657999872+03:00 1
2019-08-13 09:08:27.657999872+03:00 0
2019-08-13 09:58:27.657999872+03:00 2
2019-08-13 10:48:27.657999872+03:00 2
2019-08-13 11:38:27.657999872+03:00 1
2019-08-13 12:28:27.657999872+03:00 0
2019-08-13 13:18:27.657999872+03:00 0
2019-08-13 14:08:27.657999872+03:00 1
2019-08-13 14:58:27.657999872+03:00 0
2019-08-13 15:48:27.657999872+03:00 1
2019-08-13 16:38:27.657999872+03:00 1

jd9INuQ5BBlW 2020-01-09 02:08:03.896000+02:00 2
2020-01-09 02:58:03.896000+02:00 2
2020-01-09 03:48:03.896000+02:00 1
2020-01-09 04:38:03.896000+02:00 0
2020-01-09 05:28:03.896000+02:00 2
2020-01-09 06:18:03.896000+02:00 0

(continues on next page)

120 Chapter 13. Demo notebook for analyzing audio data

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 07:08:03.896000+02:00 1
2020-01-09 07:58:03.896000+02:00 0
2020-01-09 08:48:03.896000+02:00 1
2020-01-09 09:38:03.896000+02:00 2
2020-01-09 10:28:03.896000+02:00 1

13.4.2 4.2 Extract features using the wrapper

We can use niimpy’s ready-made wrapper to extract one or several features at the same time. The wrapper will require
two inputs: - (mandatory) dataframe that must comply with the minimum requirements (see ‘* TIP! Data requirements
above) - (optional) an argument dictionary for wrapper

4.2.1 The argument dictionary for wrapper (or how we specify the way the wrapper works)

This argument dictionary will use dictionaries created for stand-alone functions. If you do not know how to create
those argument dictionaries, please read the section 4.1.1 The argument dictionary for stand-alone functions (or
how we specify the way a function works) first.

The wrapper dictionary is simple. Its keys are the names of the features we want to compute. Its values are argument
dictionaries created for each stand-alone function we will employ. Let’s see some examples of wrapper dictionaries:

[15]: wrapper_features1 = {au.audio_count_loud:{"audio_column_name":"double_decibels",
→˓"resample_args":{"rule":"1D"}},

au.audio_max_freq:{"audio_column_name":"double_frequency","resample_
→˓args":{"rule":"1D"}}}

• wrapper_features1 will be used to analyze two features, audio_count_loud and audio_max_freq. For
the feature audio_count_loud, we will use the data stored in the column double_decibels in our dataframe
and the data will be binned in one day periods. For the feature audio_max_freq, we will use the data stored in
the column double_frequency in our dataframe and the data will be binned in one day periods.

[16]: wrapper_features2 = {au.audio_mean_db:{"audio_column_name":"random_name","resample_args":
→˓{"rule":"1D"}},

au.audio_count_speech:{"audio_column_name":"double_decibels",
→˓"audio_freq_name":"double_frequency", "resample_args":{"rule":"5H","offset":"5min"}}}

• wrapper_features2 will be used to analyze two features, audio_mean_db and audio_count_speech. For
the feature audio_mean_db, we will use the data stored in the column random_name in our dataframe and the data
will be binned in one day periods. For the feature audio_count_speech, we will use the data stored in the column
double_decibels in our dataframe and the data will be binned in 5-hour periods with a 5-minute offset. Note
that for this feature we will also need another column named “audio_freq_column”, this is because the speech is
not only defined by the amplitude of the recording, but the frequency range.

[17]: wrapper_features3 = {au.audio_mean_db:{"audio_column_name":"one_name","resample_args":{
→˓"rule":"1D","offset":"5min"}},

au.audio_min_freq:{"audio_column_name":"one_name","resample_args":{
→˓"rule":"5H"}},

au.audio_count_silent:{"audio_column_name":"another_name","resample_
→˓args":{"rule":"30T","origin":"end_day"}}}

• wrapper_features3 will be used to analyze three features, audio_mean_db, audio_min_freq, and
audio_count_silent. For the feature audio_mean_db, we will use the data stored in the column one_name

13.4. 4. Extracting features 121

Niimpy Documentation, Release dev

and the data will be binned in one day periods with a 5-min offset. For the feature audio_min_freq, we will use
the data stored in the column one_name in our dataframe and the data will be binned in 5-hour periods. Finally,
for the feature audio_count_silent, we will use the data stored in the column another_name in our dataframe
and the data will be binned in 30-minute periods and the origin of the bins will be the ceiling midnight of the
last day.

Default values: if no arguments are passed, niimpy’s default values are either “double_decibels”, “double_frequency”,
or “is_silent” for the communication_column_name, and 30-min aggregation bins. The column name depends on the
function to be called. Moreover, the wrapper will compute all the available functions in absence of the argument
dictionary.

4.2.2 Using the wrapper

Now that we understand how the wrapper is customized, it is time we compute our first communication feature using the
wrapper. Suppose that we are interested in extracting the audio_count_loud duration every 50 minutes. We will need
niimpy’s extract_features_audio function, the data, and we will also need to create a dictionary to customize our
function. Let’s create the dictionary first

[18]: wrapper_features1 = {au.audio_count_loud:{"audio_column_name":"double_decibels",
→˓"resample_args":{"rule":"50T"}}}

Now, let’s use the wrapper

[19]: results_wrapper = au.extract_features_audio(data, features=wrapper_features1)
results_wrapper.head(5)

computing <function audio_count_loud at 0x0000021328494C10>...

[19]: audio_count_loud
user
iGyXetHE3S8u 2019-08-13 07:30:00+03:00 1

2019-08-13 08:20:00+03:00 1
2019-08-13 09:10:00+03:00 1
2019-08-13 10:00:00+03:00 1
2019-08-13 10:50:00+03:00 2

Our first attempt was succesful. Now, let’s try something more. Let’s assume we want to compute the audio_count_loud
and audio_min_freq in 1-hour bins.

[20]: wrapper_features2 = {au.audio_count_loud:{"audio_column_name":"double_decibels",
→˓"resample_args":{"rule":"1H"}},

au.audio_min_freq:{"audio_column_name":"double_frequency",
→˓"resample_args":{"rule":"1H"}}}
results_wrapper = au.extract_features_audio(data, features=wrapper_features2)
results_wrapper.head(5)

computing <function audio_count_loud at 0x0000021328494C10>...
computing <function audio_min_freq at 0x0000021328494CA0>...

[20]: audio_count_loud audio_min_freq
user
iGyXetHE3S8u 2019-08-13 07:00:00+03:00 1 7735.0

2019-08-13 08:00:00+03:00 1 7690.0
2019-08-13 09:00:00+03:00 1 756.0
2019-08-13 10:00:00+03:00 2 3059.0
2019-08-13 11:00:00+03:00 2 12278.0

122 Chapter 13. Demo notebook for analyzing audio data

Niimpy Documentation, Release dev

Great! Another successful attempt. We see from the results that more columns were added with the required cal-
culations. This is how the wrapper works when all features are computed with the same bins. Now, let’s see how
the wrapper performs when each function has different binning requirements. Let’s assume we need to compute the
audio_count_loud every day, and the audio_min_freq every 5 hours with an offset of 5 minutes.

[21]: wrapper_features3 = {au.audio_count_loud:{"audio_column_name":"double_decibels",
→˓"resample_args":{"rule":"1D"}},

au.audio_min_freq:{"audio_column_name":"double_frequency",
→˓"resample_args":{"rule":"5H", "offset":"5min"}}}
results_wrapper = au.extract_features_audio(data, features=wrapper_features3)
results_wrapper.head(5)

computing <function audio_count_loud at 0x0000021328494C10>...
computing <function audio_min_freq at 0x0000021328494CA0>...

[21]: audio_count_loud audio_min_freq
user
iGyXetHE3S8u 2019-08-13 00:00:00+03:00 10.0 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 12.0 NaN
iGyXetHE3S8u 2019-08-13 05:05:00+03:00 NaN 756.0

2019-08-13 10:05:00+03:00 NaN 2914.0
2019-08-13 15:05:00+03:00 NaN 91.0

The output is once again a dataframe. In this case, two aggregations are shown. The first one is the daily aggregation
computed for the audio_count_loud feature. The second one is the 5-hour aggregation period with 5-min offset for
the audio_min_freq. We must note that because the audio_min_freqfeature is not required to be aggregated daily,
the daily aggregation timestamps have a NaN value. Similarly, because the audio_count_loudis not required to be
aggregated in 5-hour windows, its values are NaN for all subjects.

4.2.3 Wrapper and its default option

The default option will compute all features in 30-minute aggregation windows. To use the
extract_features_audio function with its default options, simply call the function.

[22]: default = au.extract_features_audio(data, features=None)

computing <function audio_count_silent at 0x00000213674A35B0>...
computing <function audio_count_speech at 0x0000021328494B80>...
computing <function audio_count_loud at 0x0000021328494C10>...
computing <function audio_min_freq at 0x0000021328494CA0>...
computing <function audio_max_freq at 0x0000021328494D30>...
computing <function audio_mean_freq at 0x0000021328494DC0>...
computing <function audio_median_freq at 0x0000021328494E50>...
computing <function audio_std_freq at 0x0000021328494EE0>...
computing <function audio_min_db at 0x0000021328494F70>...
computing <function audio_max_db at 0x0000021328495000>...
computing <function audio_mean_db at 0x0000021328495090>...
computing <function audio_median_db at 0x0000021328495120>...
computing <function audio_std_db at 0x00000213284951B0>...

[23]: default.head()

[23]: audio_count_silent \
user
iGyXetHE3S8u 2019-08-13 07:00:00+03:00 0

(continues on next page)

13.4. 4. Extracting features 123

Niimpy Documentation, Release dev

(continued from previous page)

2019-08-13 07:30:00+03:00 0
2019-08-13 08:00:00+03:00 0
2019-08-13 08:30:00+03:00 0
2019-08-13 09:00:00+03:00 1

audio_count_speech audio_count_loud \
user
iGyXetHE3S8u 2019-08-13 07:00:00+03:00 NaN NaN

2019-08-13 07:30:00+03:00 NaN 1.0
2019-08-13 08:00:00+03:00 NaN 1.0
2019-08-13 08:30:00+03:00 NaN 0.0
2019-08-13 09:00:00+03:00 NaN 0.0

audio_min_freq audio_max_freq \
user
iGyXetHE3S8u 2019-08-13 07:00:00+03:00 7735.0 7735.0

2019-08-13 07:30:00+03:00 13609.0 13609.0
2019-08-13 08:00:00+03:00 7690.0 7690.0
2019-08-13 08:30:00+03:00 8347.0 8347.0
2019-08-13 09:00:00+03:00 13592.0 13592.0

audio_mean_freq audio_median_freq \
user
iGyXetHE3S8u 2019-08-13 07:00:00+03:00 7735.0 7735.0

2019-08-13 07:30:00+03:00 13609.0 13609.0
2019-08-13 08:00:00+03:00 7690.0 7690.0
2019-08-13 08:30:00+03:00 8347.0 8347.0
2019-08-13 09:00:00+03:00 13592.0 13592.0

audio_std_freq audio_min_db \
user
iGyXetHE3S8u 2019-08-13 07:00:00+03:00 NaN 51.0

2019-08-13 07:30:00+03:00 NaN 90.0
2019-08-13 08:00:00+03:00 NaN 81.0
2019-08-13 08:30:00+03:00 NaN 58.0
2019-08-13 09:00:00+03:00 NaN 36.0

audio_max_db audio_mean_db \
user
iGyXetHE3S8u 2019-08-13 07:00:00+03:00 51.0 51.0

2019-08-13 07:30:00+03:00 90.0 90.0
2019-08-13 08:00:00+03:00 81.0 81.0
2019-08-13 08:30:00+03:00 58.0 58.0
2019-08-13 09:00:00+03:00 36.0 36.0

audio_median_db audio_std_db
user
iGyXetHE3S8u 2019-08-13 07:00:00+03:00 51.0 NaN

2019-08-13 07:30:00+03:00 90.0 NaN
2019-08-13 08:00:00+03:00 81.0 NaN
2019-08-13 08:30:00+03:00 58.0 NaN
2019-08-13 09:00:00+03:00 36.0 NaN

124 Chapter 13. Demo notebook for analyzing audio data

Niimpy Documentation, Release dev

13.5 5. Implementing own features

If none of the provided functions suits well, We can implement our own customized features easily. To do so, we
need to define a function that accepts a dataframe and returns a dataframe. The returned object should be indexed by
user and timestamps (multiindex). To make the feature readily available in the default options, we need add the audio
prefix to the new function (e.g. audio_my-new-feature). Let’s assume we need a new function that counts sums all
frequencies. Let’s first define the function

[24]: def audio_sum_freq(df,feature_functions=None):
if not "audio_column_name" in feature_functions:

col_name = "double_frequency"
else:

col_name = feature_functions["audio_column_name"]
if not "resample_args" in feature_functions.keys():

feature_functions["resample_args"] = {"rule":"30T"}

if len(df)>0:
result = df.groupby('user')[col_name].resample(**feature_functions["resample_args

→˓"]).sum()
result = result.to_frame(name='audio_sum_freq')

return result

Then, we can call our new function in the stand-alone way or using the extract_features_audio function. Because
the stand-alone way is the common way to call functions in python, we will not show it. Instead, we will show how to
integrate this new function to the wrapper. Let’s read again the data and assume we want the default behavior of the
wrapper.

[25]: customized_features = au.extract_features_audio(data, features={audio_sum_freq: {}})

computing <function audio_sum_freq at 0x0000021328557BE0>...

[26]: customized_features.head()

[26]: audio_sum_freq
user
iGyXetHE3S8u 2019-08-13 07:00:00+03:00 7735

2019-08-13 07:30:00+03:00 13609
2019-08-13 08:00:00+03:00 7690
2019-08-13 08:30:00+03:00 8347
2019-08-13 09:00:00+03:00 13592

[]:

13.5. 5. Implementing own features 125

Niimpy Documentation, Release dev

126 Chapter 13. Demo notebook for analyzing audio data

CHAPTER

FOURTEEN

DEMO NOTEBOOK: ANALYSING BATTERY DATA

14.1 Read data

[1]: import pandas as pd
import niimpy
import niimpy.preprocessing.battery as battery
from niimpy import config
import warnings
warnings.filterwarnings("ignore")

[2]: data = niimpy.read_csv(config.MULTIUSER_AWARE_BATTERY_PATH, tz='Europe/Helsinki')
data.shape

[2]: (505, 8)

14.2 Introduction

In this notebook , we will extract battery data from the Aware platform and infer users’ behavioral patterns from their
interaction with the phone. The below functions will be described in this notebook:

• niimpy.preprocessing.battery.battery_shutdown_info: returns the timestamp when the device is
shutdown or rebooted

• niimpy.preprocessing.battery.battery_occurrences: returns the number of battery samples within a
time range

• niimpy.preprocessing.battery.battery_gaps: returns the time gaps between two battery sample

[3]: data.head()

[3]: user device time
2020-01-09 02:20:02.924999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09 \
2020-01-09 02:21:30.405999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:24:12.805999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:35:38.561000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:35:38.953000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09

battery_level battery_status
2020-01-09 02:20:02.924999936+02:00 74 3 \
2020-01-09 02:21:30.405999872+02:00 73 3

(continues on next page)

127

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 02:24:12.805999872+02:00 72 3
2020-01-09 02:35:38.561000192+02:00 72 2
2020-01-09 02:35:38.953000192+02:00 72 2

battery_health battery_adaptor
2020-01-09 02:20:02.924999936+02:00 2 0 \
2020-01-09 02:21:30.405999872+02:00 2 0
2020-01-09 02:24:12.805999872+02:00 2 0
2020-01-09 02:35:38.561000192+02:00 2 0
2020-01-09 02:35:38.953000192+02:00 2 2

datetime
2020-01-09 02:20:02.924999936+02:00 2020-01-09 02:20:02.924999936+02:00
2020-01-09 02:21:30.405999872+02:00 2020-01-09 02:21:30.405999872+02:00
2020-01-09 02:24:12.805999872+02:00 2020-01-09 02:24:12.805999872+02:00
2020-01-09 02:35:38.561000192+02:00 2020-01-09 02:35:38.561000192+02:00
2020-01-09 02:35:38.953000192+02:00 2020-01-09 02:35:38.953000192+02:00

128 Chapter 14. Demo notebook: Analysing battery data

CHAPTER

FIFTEEN

FEATURE EXTRACTION

By default, Niimpy data should be ordered by the timestamp in ascending order. We start by sorting the data to make
sure it’s compatible.

[4]: data = data.sort_index()

Next, we will use Niimpy to extract features from the data. These are useful for inspecting the data and can be part of
a full analysis workflow.

Usin the battery_occurences function, we can count the amount the battery samples every 10 minutes. This function
requires the index to be sorted.

[5]: battery.battery_occurrences(data, {"resample_args": {"rule": "10T"}})

[5]: occurrences
user
iGyXetHE3S8u 2019-08-05 14:00:00+03:00 2

2019-08-05 14:10:00+03:00 0
2019-08-05 14:20:00+03:00 0
2019-08-05 14:30:00+03:00 1
2019-08-05 14:40:00+03:00 0

... ...
jd9INuQ5BBlW 2020-01-09 22:50:00+02:00 0

2020-01-09 23:00:00+02:00 1
2020-01-09 23:10:00+02:00 1
2020-01-09 23:20:00+02:00 1
2020-01-09 23:30:00+02:00 2

[626 rows x 1 columns]

The above dataframe gives the battery information of all users. You can also get the information for an individual by
passing a filtered dataframe.

[6]: f = niimpy.preprocessing.battery.battery_occurrences
data_filtered = data.query('user == "jd9INuQ5BBlW"')
individual_occurences = battery.extract_features_battery(data_filtered, feature_
→˓functions={f: {"resample_args": {"rule": "10T"}}})
individual_occurences.head()

<function battery_occurrences at 0x7fd699bf72e0> {'resample_args': {'rule': '10T'}}

[6]: occurrences
user
jd9INuQ5BBlW 2020-01-09 02:00:00+02:00 3

(continues on next page)

129

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 02:10:00+02:00 1
2020-01-09 02:20:00+02:00 5
2020-01-09 02:30:00+02:00 16
2020-01-09 02:40:00+02:00 14

Next, you can extract the gaps between two consecutive battery samples with the battery_gaps function.

[7]: f = niimpy.preprocessing.battery.battery_gaps
gaps = battery.battery_gaps(data, {})
gaps

[7]: battery_gap
user
iGyXetHE3S8u 2019-08-05 14:00:00+03:00 0 days 00:01:18.600000

2019-08-05 14:30:00+03:00 0 days 00:27:18.396000
2019-08-05 15:00:00+03:00 0 days 00:51:11.997000192
2019-08-05 15:30:00+03:00 NaT
2019-08-05 16:00:00+03:00 0 days 00:59:23.522999808

... ...
jd9INuQ5BBlW 2020-01-09 21:30:00+02:00 0 days 00:05:41.859499968

2020-01-09 22:00:00+02:00 0 days 00:14:10.238500096
2020-01-09 22:30:00+02:00 0 days 00:21:09.899999744
2020-01-09 23:00:00+02:00 0 days 00:13:20.001333418
2020-01-09 23:30:00+02:00 0 days 00:08:26.416999936

[210 rows x 1 columns]

Knowing when the phone is shutdown is essential if we want to infer the usage behaviour of the subjects. This can be
done by calling the shutdown_info function. The function returns the timestamp when the phone is shut down or
rebooted (e.g: battery_status = -1).

[8]: shutdown = battery.shutdown_info(data, feature_functions={'battery_column_name':
→˓'battery_status'})
shutdown

AttributeError Traceback (most recent call last)
/tmp/ipykernel_306302/2493873374.py in ?()
----> 1 shutdown = battery.shutdown_info(data, feature_functions={'battery_column_name':
→˓'battery_status'})

2 shutdown

~/src/niimpy/niimpy/preprocessing/battery.py in ?(df, feature_functions)
29
30 df[col_name] = pd.to_numeric(df[col_name]) #convert to numeric in case it is␣

→˓not
31
32 shutdown = df[df[col_name].between(-3, 0, inclusive="neither")]

---> 33 return shutdown[col_name].to_dataframe()

~/miniconda3/envs/niimpy/lib/python3.11/site-packages/pandas/core/generic.py in ?(self,␣
→˓name)
5985 and name not in self._accessors

(continues on next page)

130 Chapter 15. Feature extraction

Niimpy Documentation, Release dev

(continued from previous page)

5986 and self._info_axis._can_hold_identifiers_and_holds_name(name)
5987):
5988 return self[name]

-> 5989 return object.__getattribute__(self, name)

AttributeError: 'Series' object has no attribute 'to_dataframe'

15.1 Extracting features with the extract_features call

We have seen above how to extract battery features using niimpy. Sometimes, we need more than one features and
it would be inconvenient to extract everything one by one. niimpy provides a extract_feature call to allow you
extracting all the features available and combining them into a single data frame. The extractable features must start
with the prefix battery_.

[]: # Start by defining the feature name
f0 = niimpy.preprocessing.battery.battery_occurrences
f1 = niimpy.preprocessing.battery.battery_gaps
f2 = niimpy.preprocessing.battery.battery_charge_discharge

The extract_feature function requires a feature_functions parameter.
This parameter accepts a dictionary where the key is the feature name and value
is a dictionary containing values passed to the function.
features = battery.extract_features_battery(

data,
feature_functions={f0: {'rule': "10min"},
f1: {},
f2: {}

})
features.head()

<function battery_occurrences at 0x7f15ba5bb2e0> {'rule': '10min'}
<function battery_gaps at 0x7f15ba5bb380> {}
<function battery_charge_discharge at 0x7f15ba5bb420> {}

occurrences battery_gap
user
iGyXetHE3S8u 2019-08-05 14:00:00+03:00 2 0 days 00:01:18.600000 \

2019-08-05 14:30:00+03:00 1 0 days 00:27:18.396000
2019-08-05 15:00:00+03:00 1 0 days 00:51:11.997000192
2019-08-05 15:30:00+03:00 0 NaT
2019-08-05 16:00:00+03:00 1 0 days 00:59:23.522999808

bdelta charge/discharge
user
iGyXetHE3S8u 2019-08-05 14:00:00+03:00 -0.5 -0.006361

2019-08-05 14:30:00+03:00 -1.0 -0.000610
2019-08-05 15:00:00+03:00 -1.0 -0.000326
2019-08-05 15:30:00+03:00 NaN NaN
2019-08-05 16:00:00+03:00 -1.0 -0.000281

15.1. Extracting features with the extract_features call 131

Niimpy Documentation, Release dev

132 Chapter 15. Feature extraction

CHAPTER

SIXTEEN

BASIC TRANSFORMATIONS

This page shows some basic transformations you can do once you have read data. Really, it is simply a pandas crash
course, since pandas provides all the operations you may need and there is no need for us to re-invent things. Pandas
provides a solid but flexible base for us to build advanced operations on top of.

You can read more at the Pandas documentation.

16.1 Extracting single rows and columns

Let’s first import mobile phone battery status data.

[1]: TZ = 'Europe/Helsinki'

[2]: import niimpy
from niimpy import config
import warnings
warnings.filterwarnings("ignore")

[3]: # Read the data
df = niimpy.read_csv(config.MULTIUSER_AWARE_BATTERY_PATH, tz='Europe/Helsinki')

Then check first rows of the dataframe.

[4]: df.head()

[4]: user device time \
2020-01-09 02:20:02.924999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:21:30.405999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:24:12.805999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:35:38.561000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:35:38.953000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09

battery_level battery_status \
2020-01-09 02:20:02.924999936+02:00 74 3
2020-01-09 02:21:30.405999872+02:00 73 3
2020-01-09 02:24:12.805999872+02:00 72 3
2020-01-09 02:35:38.561000192+02:00 72 2
2020-01-09 02:35:38.953000192+02:00 72 2

battery_health battery_adaptor \
(continues on next page)

133

https://pandas.pydata.org/pandas-docs/stable/index.html

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 02:20:02.924999936+02:00 2 0
2020-01-09 02:21:30.405999872+02:00 2 0
2020-01-09 02:24:12.805999872+02:00 2 0
2020-01-09 02:35:38.561000192+02:00 2 0
2020-01-09 02:35:38.953000192+02:00 2 2

datetime
2020-01-09 02:20:02.924999936+02:00 2020-01-09 02:20:02.924999936+02:00
2020-01-09 02:21:30.405999872+02:00 2020-01-09 02:21:30.405999872+02:00
2020-01-09 02:24:12.805999872+02:00 2020-01-09 02:24:12.805999872+02:00
2020-01-09 02:35:38.561000192+02:00 2020-01-09 02:35:38.561000192+02:00
2020-01-09 02:35:38.953000192+02:00 2020-01-09 02:35:38.953000192+02:00

Get a single column, in this case all users:

[5]: df['user']

[5]: 2020-01-09 02:20:02.924999936+02:00 jd9INuQ5BBlW
2020-01-09 02:21:30.405999872+02:00 jd9INuQ5BBlW
2020-01-09 02:24:12.805999872+02:00 jd9INuQ5BBlW
2020-01-09 02:35:38.561000192+02:00 jd9INuQ5BBlW
2020-01-09 02:35:38.953000192+02:00 jd9INuQ5BBlW

...
2019-08-09 00:30:48.073999872+03:00 iGyXetHE3S8u
2019-08-09 00:32:40.717999872+03:00 iGyXetHE3S8u
2019-08-09 00:34:23.114000128+03:00 iGyXetHE3S8u
2019-08-09 00:36:05.505000192+03:00 iGyXetHE3S8u
2019-08-09 00:37:37.671000064+03:00 iGyXetHE3S8u
Name: user, Length: 505, dtype: object

Get a single row, in this case the 5th (the first row is zero):

[6]: df.iloc[4]

[6]: user jd9INuQ5BBlW
device 3p83yASkOb_B
time 1578530138.953
battery_level 72
battery_status 2
battery_health 2
battery_adaptor 2
datetime 2020-01-09 02:35:38.953000192+02:00
Name: 2020-01-09 02:35:38.953000192+02:00, dtype: object

134 Chapter 16. Basic transformations

Niimpy Documentation, Release dev

16.2 Listing unique users

We can list unique users by using pandas.unique() function.

[7]: df['user'].unique()

[7]: array(['jd9INuQ5BBlW', 'iGyXetHE3S8u'], dtype=object)

16.3 List unique values

Same applies to other data features/columns.

[8]: df['battery_status'].unique()

[8]: array([3, 2, 5, -1, -3], dtype=int64)

16.4 Extract data of only one subject

We can extract data of only one subject by following:

[9]: df[df['user'] == 'jd9INuQ5BBlW']

[9]: user device time \
2020-01-09 02:20:02.924999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:21:30.405999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:24:12.805999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:35:38.561000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:35:38.953000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
...
2020-01-09 23:02:13.938999808+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578604e+09
2020-01-09 23:10:37.262000128+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578604e+09
2020-01-09 23:22:13.966000128+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578605e+09
2020-01-09 23:32:13.959000064+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578606e+09
2020-01-09 23:39:06.800000+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578606e+09

battery_level battery_status \
2020-01-09 02:20:02.924999936+02:00 74 3
2020-01-09 02:21:30.405999872+02:00 73 3
2020-01-09 02:24:12.805999872+02:00 72 3
2020-01-09 02:35:38.561000192+02:00 72 2
2020-01-09 02:35:38.953000192+02:00 72 2
...
2020-01-09 23:02:13.938999808+02:00 73 3
2020-01-09 23:10:37.262000128+02:00 73 3
2020-01-09 23:22:13.966000128+02:00 72 3
2020-01-09 23:32:13.959000064+02:00 71 3
2020-01-09 23:39:06.800000+02:00 71 3

battery_health battery_adaptor \
2020-01-09 02:20:02.924999936+02:00 2 0

(continues on next page)

16.2. Listing unique users 135

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 02:21:30.405999872+02:00 2 0
2020-01-09 02:24:12.805999872+02:00 2 0
2020-01-09 02:35:38.561000192+02:00 2 0
2020-01-09 02:35:38.953000192+02:00 2 2
...
2020-01-09 23:02:13.938999808+02:00 2 0
2020-01-09 23:10:37.262000128+02:00 2 0
2020-01-09 23:22:13.966000128+02:00 2 0
2020-01-09 23:32:13.959000064+02:00 2 0
2020-01-09 23:39:06.800000+02:00 2 0

datetime
2020-01-09 02:20:02.924999936+02:00 2020-01-09 02:20:02.924999936+02:00
2020-01-09 02:21:30.405999872+02:00 2020-01-09 02:21:30.405999872+02:00
2020-01-09 02:24:12.805999872+02:00 2020-01-09 02:24:12.805999872+02:00
2020-01-09 02:35:38.561000192+02:00 2020-01-09 02:35:38.561000192+02:00
2020-01-09 02:35:38.953000192+02:00 2020-01-09 02:35:38.953000192+02:00
... ...
2020-01-09 23:02:13.938999808+02:00 2020-01-09 23:02:13.938999808+02:00
2020-01-09 23:10:37.262000128+02:00 2020-01-09 23:10:37.262000128+02:00
2020-01-09 23:22:13.966000128+02:00 2020-01-09 23:22:13.966000128+02:00
2020-01-09 23:32:13.959000064+02:00 2020-01-09 23:32:13.959000064+02:00
2020-01-09 23:39:06.800000+02:00 2020-01-09 23:39:06.800000+02:00

[373 rows x 8 columns]

16.5 Renaming a column or columns

Dataframe column can be renamed using pandas.DataFrame.rename() function.

[10]: df.rename(columns={'time': 'timestamp'}, inplace=True)
df.head()

[10]: user device timestamp \
2020-01-09 02:20:02.924999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:21:30.405999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:24:12.805999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:35:38.561000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:35:38.953000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09

battery_level battery_status \
2020-01-09 02:20:02.924999936+02:00 74 3
2020-01-09 02:21:30.405999872+02:00 73 3
2020-01-09 02:24:12.805999872+02:00 72 3
2020-01-09 02:35:38.561000192+02:00 72 2
2020-01-09 02:35:38.953000192+02:00 72 2

battery_health battery_adaptor \
2020-01-09 02:20:02.924999936+02:00 2 0
2020-01-09 02:21:30.405999872+02:00 2 0

(continues on next page)

136 Chapter 16. Basic transformations

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 02:24:12.805999872+02:00 2 0
2020-01-09 02:35:38.561000192+02:00 2 0
2020-01-09 02:35:38.953000192+02:00 2 2

datetime
2020-01-09 02:20:02.924999936+02:00 2020-01-09 02:20:02.924999936+02:00
2020-01-09 02:21:30.405999872+02:00 2020-01-09 02:21:30.405999872+02:00
2020-01-09 02:24:12.805999872+02:00 2020-01-09 02:24:12.805999872+02:00
2020-01-09 02:35:38.561000192+02:00 2020-01-09 02:35:38.561000192+02:00
2020-01-09 02:35:38.953000192+02:00 2020-01-09 02:35:38.953000192+02:00

16.6 Change datatypes

Let’s then check the dataframe datatypes:

[11]: df.dtypes

[11]: user object
device object
timestamp float64
battery_level int64
battery_status int64
battery_health int64
battery_adaptor int64
datetime datetime64[ns, Europe/Helsinki]
dtype: object

We can change the datatypes with pandas.astype() function. Here we change battery_health datatype to categor-
ical:

[12]: df.astype({'battery_health': 'category'}).dtypes

[12]: user object
device object
timestamp float64
battery_level int64
battery_status int64
battery_health category
battery_adaptor int64
datetime datetime64[ns, Europe/Helsinki]
dtype: object

16.6. Change datatypes 137

Niimpy Documentation, Release dev

16.7 Transforming a column to a new value

Dataframe values can be transformed (decoded etc.) into new values by using pandas.transform()function.

Here we add one to the column values.

[13]: df['battery_adaptor'].transform(lambda x: x + 1)

[13]: 2020-01-09 02:20:02.924999936+02:00 1
2020-01-09 02:21:30.405999872+02:00 1
2020-01-09 02:24:12.805999872+02:00 1
2020-01-09 02:35:38.561000192+02:00 1
2020-01-09 02:35:38.953000192+02:00 3

..
2019-08-09 00:30:48.073999872+03:00 2
2019-08-09 00:32:40.717999872+03:00 2
2019-08-09 00:34:23.114000128+03:00 2
2019-08-09 00:36:05.505000192+03:00 2
2019-08-09 00:37:37.671000064+03:00 2
Name: battery_adaptor, Length: 505, dtype: int64

16.8 Resample

Dataframe down/upsampling can be done with pandas.resample() function.

Here we downsample the data by hour and aggregate the mean:

[14]: df['battery_level'].resample('H').agg("mean")

[14]: 2019-08-05 14:00:00+03:00 46.000000
2019-08-05 15:00:00+03:00 44.000000
2019-08-05 16:00:00+03:00 43.000000
2019-08-05 17:00:00+03:00 42.000000
2019-08-05 18:00:00+03:00 41.000000

...
2020-01-09 19:00:00+02:00 86.166667
2020-01-09 20:00:00+02:00 82.000000
2020-01-09 21:00:00+02:00 78.428571
2020-01-09 22:00:00+02:00 75.000000
2020-01-09 23:00:00+02:00 72.000000
Freq: H, Name: battery_level, Length: 3779, dtype: float64

16.9 Groupby

For groupwise data inspection, we can use pandas.DataFrame.groupby() function.

Let’s first load dataframe having several subjects belonging to different groups.

[15]: df = niimpy.read_csv(config.SL_ACTIVITY_PATH, tz='Europe/Helsinki')
df

138 Chapter 16. Basic transformations

Niimpy Documentation, Release dev

[15]: timestamp user activity group
0 2013-03-27 06:00:00-05:00 u00 2 none
1 2013-03-27 07:00:00-05:00 u00 1 none
2 2013-03-27 08:00:00-05:00 u00 2 none
3 2013-03-27 09:00:00-05:00 u00 3 none
4 2013-03-27 10:00:00-05:00 u00 4 none
...
55902 2013-05-31 18:00:00-05:00 u59 5 mild
55903 2013-05-31 19:00:00-05:00 u59 5 mild
55904 2013-05-31 20:00:00-05:00 u59 4 mild
55905 2013-05-31 21:00:00-05:00 u59 5 mild
55906 2013-05-31 22:00:00-05:00 u59 1 mild

[55907 rows x 4 columns]

We can summarize the data by grouping the observations by group and user, and then aggregating the mean:

[16]: df.groupby(['group','user']).agg("mean")

[16]: activity
group user
mild u02 0.922348

u04 1.466960
u07 0.914457
u16 0.702918
u20 0.277946
u24 0.938028
u27 0.653724
u31 0.929495
u35 0.519455
u43 0.809045
u49 1.159767
u58 0.620621
u59 1.626263

moderate u18 0.445323
u52 1.051735

moderately severe u17 0.489510
u23 0.412884

none u00 1.182973
u03 0.176737
u05 0.606742
u09 1.095908
u10 0.662612
u14 1.005859
u15 0.295990
u30 0.933036
u32 1.113593
u36 0.936281
u42 0.378851
u44 0.292580
u47 0.396026
u51 0.828662
u56 0.840967

(continues on next page)

16.9. Groupby 139

Niimpy Documentation, Release dev

(continued from previous page)

severe u01 1.063660
u19 0.571792
u33 0.733115
u34 0.454789
u45 0.441134
u53 0.389404

16.10 Summary statistics

There are many ways you may want to get an overview of your data.

Let’s first load mobile phone screen activity data.

[17]: df = niimpy.read_csv(config.MULTIUSER_AWARE_SCREEN_PATH, tz='Europe/Helsinki')

[18]: df

[18]: user device time \
2020-01-09 02:06:41.573999872+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578528e+09
2020-01-09 02:09:29.152000+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:09:32.790999808+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:11:41.996000+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:16:19.010999808+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
...
2019-09-08 17:17:14.216000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567952e+09
2019-09-08 17:17:31.966000128+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567952e+09
2019-09-08 20:50:07.360000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567965e+09
2019-09-08 20:50:08.139000064+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567965e+09
2019-09-08 20:53:12.960000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567965e+09

screen_status \
2020-01-09 02:06:41.573999872+02:00 0
2020-01-09 02:09:29.152000+02:00 1
2020-01-09 02:09:32.790999808+02:00 3
2020-01-09 02:11:41.996000+02:00 0
2020-01-09 02:16:19.010999808+02:00 1
... ...
2019-09-08 17:17:14.216000+03:00 1
2019-09-08 17:17:31.966000128+03:00 0
2019-09-08 20:50:07.360000+03:00 3
2019-09-08 20:50:08.139000064+03:00 1
2019-09-08 20:53:12.960000+03:00 0

datetime
2020-01-09 02:06:41.573999872+02:00 2020-01-09 02:06:41.573999872+02:00
2020-01-09 02:09:29.152000+02:00 2020-01-09 02:09:29.152000+02:00
2020-01-09 02:09:32.790999808+02:00 2020-01-09 02:09:32.790999808+02:00
2020-01-09 02:11:41.996000+02:00 2020-01-09 02:11:41.996000+02:00
2020-01-09 02:16:19.010999808+02:00 2020-01-09 02:16:19.010999808+02:00
... ...
2019-09-08 17:17:14.216000+03:00 2019-09-08 17:17:14.216000+03:00

(continues on next page)

140 Chapter 16. Basic transformations

Niimpy Documentation, Release dev

(continued from previous page)

2019-09-08 17:17:31.966000128+03:00 2019-09-08 17:17:31.966000128+03:00
2019-09-08 20:50:07.360000+03:00 2019-09-08 20:50:07.360000+03:00
2019-09-08 20:50:08.139000064+03:00 2019-09-08 20:50:08.139000064+03:00
2019-09-08 20:53:12.960000+03:00 2019-09-08 20:53:12.960000+03:00

[277 rows x 5 columns]

16.11 Hourly data

It is easy to get the amount of data (observations) in each hour

[19]: hourly = df.groupby([df.index.date, df.index.hour]).size()
hourly

[19]: 2019-08-05 14 19
2019-08-08 21 6

22 12
2019-08-09 7 6
2019-08-10 15 3
2019-08-12 22 3
2019-08-13 7 12

8 3
9 5

2019-08-14 23 3
2019-08-15 12 3
2019-08-17 15 6
2019-08-18 19 3
2019-08-24 8 3

9 3
12 3
13 3

2019-08-25 11 5
12 4

2019-08-26 11 6
2019-08-31 19 3
2019-09-05 23 3
2019-09-07 8 3
2019-09-08 11 3

17 6
20 3

2020-01-09 2 27
10 6
11 3
12 3
14 17
15 35
16 4
17 8
18 4
20 4

(continues on next page)

16.11. Hourly data 141

Niimpy Documentation, Release dev

(continued from previous page)

21 19
22 3
23 12

dtype: int64

[20]: # The index is the (day, hour) pairs and the
value is the number at that time
print('%s had %d data points'%(hourly.index[0], hourly.iloc[0]))

(datetime.date(2019, 8, 5), 14) had 19 data points

16.12 Occurence

In niimpy, occurence is a way to see the completeness of data.

Occurence is defined as such: * Divides all time into hours * Divides all hours into five 12-minute intervals * Count
the number of 12-minute intervals that have data. This is 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 * For each hour, report 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒. “5”is taken
to mean that data is present somewhat regularly, while “0” means we have no data.

This isn’t the perfect measure, but is reasonably effective and simple to calculate. For data which isn’t continuous (like
screen data we are actually using), it shows how much the sensor has been used.

Column meanings: day is the date, hour is hour of day, occurrence is the measure described above, count is total
number of data points in this hour, withdata is which of the 12-min intervals (0-4) have data.

Note that the “uniformly present data” is not true for all data sources.

[21]: occurrences = niimpy.util.occurrence(df.index)
occurrences.head()

[21]: day hour occurrence
2019-08-05 14:00:00 2019-08-05 14 4
2019-08-08 21:00:00 2019-08-08 21 1
2019-08-08 22:00:00 2019-08-08 22 2
2019-08-09 07:00:00 2019-08-09 7 2
2019-08-10 15:00:00 2019-08-10 15 1

We can create a simplified presentation (pivot table) for the data by using pandas.pivot()function:

[22]: occurrences.pivot('hour', 'day')

[22]: occurrence \
day 2019-08-05 2019-08-08 2019-08-09 2019-08-10 2019-08-12 2019-08-13
hour
2 NaN NaN NaN NaN NaN NaN
7 NaN NaN 2.0 NaN NaN 1.0
8 NaN NaN NaN NaN NaN 1.0
9 NaN NaN NaN NaN NaN 1.0
10 NaN NaN NaN NaN NaN NaN
11 NaN NaN NaN NaN NaN NaN
12 NaN NaN NaN NaN NaN NaN
13 NaN NaN NaN NaN NaN NaN
14 4.0 NaN NaN NaN NaN NaN

(continues on next page)

142 Chapter 16. Basic transformations

Niimpy Documentation, Release dev

(continued from previous page)

15 NaN NaN NaN 1.0 NaN NaN
16 NaN NaN NaN NaN NaN NaN
17 NaN NaN NaN NaN NaN NaN
18 NaN NaN NaN NaN NaN NaN
19 NaN NaN NaN NaN NaN NaN
20 NaN NaN NaN NaN NaN NaN
21 NaN 1.0 NaN NaN NaN NaN
22 NaN 2.0 NaN NaN 1.0 NaN
23 NaN NaN NaN NaN NaN NaN

\
day 2019-08-14 2019-08-15 2019-08-17 2019-08-18 2019-08-24 2019-08-25
hour
2 NaN NaN NaN NaN NaN NaN
7 NaN NaN NaN NaN NaN NaN
8 NaN NaN NaN NaN 1.0 NaN
9 NaN NaN NaN NaN 1.0 NaN
10 NaN NaN NaN NaN NaN NaN
11 NaN NaN NaN NaN NaN 2.0
12 NaN 1.0 NaN NaN 1.0 1.0
13 NaN NaN NaN NaN 2.0 NaN
14 NaN NaN NaN NaN NaN NaN
15 NaN NaN 3.0 NaN NaN NaN
16 NaN NaN NaN NaN NaN NaN
17 NaN NaN NaN NaN NaN NaN
18 NaN NaN NaN NaN NaN NaN
19 NaN NaN NaN 1.0 NaN NaN
20 NaN NaN NaN NaN NaN NaN
21 NaN NaN NaN NaN NaN NaN
22 NaN NaN NaN NaN NaN NaN
23 1.0 NaN NaN NaN NaN NaN

day 2019-08-26 2019-08-31 2019-09-05 2019-09-07 2019-09-08 2020-01-09
hour
2 NaN NaN NaN NaN NaN 4.0
7 NaN NaN NaN NaN NaN NaN
8 NaN NaN NaN 1.0 NaN NaN
9 NaN NaN NaN NaN NaN NaN
10 NaN NaN NaN NaN NaN 2.0
11 1.0 NaN NaN NaN 2.0 1.0
12 NaN NaN NaN NaN NaN 1.0
13 NaN NaN NaN NaN NaN NaN
14 NaN NaN NaN NaN NaN 2.0
15 NaN NaN NaN NaN NaN 3.0
16 NaN NaN NaN NaN NaN 1.0
17 NaN NaN NaN NaN 1.0 2.0
18 NaN NaN NaN NaN NaN 1.0
19 NaN 1.0 NaN NaN NaN NaN
20 NaN NaN NaN NaN 1.0 1.0
21 NaN NaN NaN NaN NaN 4.0
22 NaN NaN NaN NaN NaN 1.0

(continues on next page)

16.12. Occurence 143

Niimpy Documentation, Release dev

(continued from previous page)

23 NaN NaN 1.0 NaN NaN 1.0

144 Chapter 16. Basic transformations

CHAPTER

SEVENTEEN

DEMO NOTEBOOK FOR ANALYZING CALLS AND SMS DATA

17.1 1. Introduction

In niimpy, communication data includes calls and SMS information. These data can reveal important information
about people’s circadian rhythm, social patterns, and activity, just to mention a few. Therefore, it is important to
organize this information for further processing and analysis. To address this, niimpy includes a set of functions to
clean, downsample, and extract features from communication data. The available features are:

• call_duration_total: duration of incoming and outgoing calls

• call_duration_mean: mean duration of incoming and outgoing calls

• call_duration_median: median duration of incoming and outgoing calls

• call_duration_std: standard deviation of incoming and outgoing calls

• call_count: number of calls within a time window

• call_outgoing_incoming_ratio: number of outgoing calls divided by the number of incoming calls

• sms_count: count of incoming and outgoing text messages

• extract_features_comms: wrapper to extract several features at the same time

In the following, we will analyze call logs provided by niimpy as an example to illustrate the use of niimpy’s commu-
nication preprocessing functions.

17.2 2. Read data

Let’s start by reading the example data provided in niimpy. These data have already been shaped in a format that meets
the requirements of the data schema. Let’s start by importing the needed modules. Firstly we will import the niimpy
package and then we will import the module we will use (communication) and give it a short name for use convinience.

[1]: import niimpy
import niimpy.preprocessing.communication as com
from niimpy import config
import pandas as pd
import warnings
warnings.filterwarnings("ignore")

Now let’s read the example data provided in niimpy. The example data is in csv format, so we need to use the
read_csv function. When reading the data, we can specify the timezone where the data was collected. This will help
us handle daylight saving times easier. We can specify the timezone with the argument tz. The output is a dataframe.
We can also check the number of rows and columns in the dataframe.

145

Niimpy Documentation, Release dev

[2]: data = niimpy.read_csv(config.MULTIUSER_AWARE_CALLS_PATH, tz='Europe/Helsinki')
data.shape

[2]: (38, 6)

The data was succesfully read. We can see that there are 38 datapoints with 6 columns in the dataset. However, we do
not know yet what the data really looks like, so let’s have a quick look:

[3]: data.head()

[3]: user device time \
2020-01-09 02:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:49:44.969000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578531e+09
2020-01-09 02:22:57.168999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:27:21.187000064+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:47:16.176999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578531e+09

call_type call_duration \
2020-01-09 02:08:03.896000+02:00 incoming 1079
2020-01-09 02:49:44.969000192+02:00 outgoing 174
2020-01-09 02:22:57.168999936+02:00 outgoing 890
2020-01-09 02:27:21.187000064+02:00 outgoing 1342
2020-01-09 02:47:16.176999936+02:00 incoming 645

datetime
2020-01-09 02:08:03.896000+02:00 2020-01-09 02:08:03.896000+02:00
2020-01-09 02:49:44.969000192+02:00 2020-01-09 02:49:44.969000192+02:00
2020-01-09 02:22:57.168999936+02:00 2020-01-09 02:22:57.168999936+02:00
2020-01-09 02:27:21.187000064+02:00 2020-01-09 02:27:21.187000064+02:00
2020-01-09 02:47:16.176999936+02:00 2020-01-09 02:47:16.176999936+02:00

[4]: data.tail()

[4]: user device time \
2019-08-12 22:10:21.504000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565637e+09
2019-08-12 22:27:19.923000064+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565638e+09
2019-08-13 07:01:00.960999936+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565669e+09
2019-08-13 07:28:27.657999872+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565671e+09
2019-08-13 07:21:26.436000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565670e+09

call_type call_duration \
2019-08-12 22:10:21.504000+03:00 incoming 715
2019-08-12 22:27:19.923000064+03:00 outgoing 225
2019-08-13 07:01:00.960999936+03:00 outgoing 1231
2019-08-13 07:28:27.657999872+03:00 incoming 591
2019-08-13 07:21:26.436000+03:00 outgoing 375

datetime
2019-08-12 22:10:21.504000+03:00 2019-08-12 22:10:21.504000+03:00
2019-08-12 22:27:19.923000064+03:00 2019-08-12 22:27:19.923000064+03:00
2019-08-13 07:01:00.960999936+03:00 2019-08-13 07:01:00.960999936+03:00
2019-08-13 07:28:27.657999872+03:00 2019-08-13 07:28:27.657999872+03:00
2019-08-13 07:21:26.436000+03:00 2019-08-13 07:21:26.436000+03:00

By exploring the head and tail of the dataframe we can form an idea of its entirety. From the data, we can see that:

146 Chapter 17. Demo notebook for analyzing calls and SMS data

Niimpy Documentation, Release dev

• rows are observations, indexed by timestamps, i.e. each row represents a call that was received/done/missed at a
given time and date

• columns are characteristics for each observation, for example, the user whose data we are analyzing

• there are at least two different users in the dataframe

• there are two main columns: call_type and call_duration. In this case, the call_type columns stores
information about whether the call was incoming, outgoing or missed; and the call_duration contains the
duration of the call in seconds

In fact, we can check the first three elements for each user

[5]: data.drop_duplicates(['user','call_duration']).groupby('user').head(3)

[5]: user device time \
2020-01-09 02:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:49:44.969000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578531e+09
2020-01-09 02:22:57.168999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2019-08-08 22:32:25.256999936+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565293e+09
2019-08-08 22:53:35.107000064+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565294e+09
2019-08-08 22:31:34.540000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565293e+09

call_type call_duration \
2020-01-09 02:08:03.896000+02:00 incoming 1079
2020-01-09 02:49:44.969000192+02:00 outgoing 174
2020-01-09 02:22:57.168999936+02:00 outgoing 890
2019-08-08 22:32:25.256999936+03:00 incoming 1217
2019-08-08 22:53:35.107000064+03:00 incoming 383
2019-08-08 22:31:34.540000+03:00 incoming 1142

datetime
2020-01-09 02:08:03.896000+02:00 2020-01-09 02:08:03.896000+02:00
2020-01-09 02:49:44.969000192+02:00 2020-01-09 02:49:44.969000192+02:00
2020-01-09 02:22:57.168999936+02:00 2020-01-09 02:22:57.168999936+02:00
2019-08-08 22:32:25.256999936+03:00 2019-08-08 22:32:25.256999936+03:00
2019-08-08 22:53:35.107000064+03:00 2019-08-08 22:53:35.107000064+03:00
2019-08-08 22:31:34.540000+03:00 2019-08-08 22:31:34.540000+03:00

Sometimes the data may come in a disordered manner, so just to make sure, let’s order the dataframe and compare
the results. We will use the columns “user” and “datetime” since we would like to order the information according to
firstly, participants, and then, by time in order of happening. Luckily, in our dataframe, the index and datetime are the
same.

[6]: data.sort_values(by=['user', 'datetime'], inplace=True)
data.drop_duplicates(['user','call_duration']).groupby('user').head(3)

[6]: user device time \
2019-08-08 22:31:34.540000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565293e+09
2019-08-08 22:32:25.256999936+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565293e+09
2019-08-08 22:43:45.834000128+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.565293e+09
2020-01-09 01:55:16.996000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:06:09.790999808+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09

call_type call_duration \
2019-08-08 22:31:34.540000+03:00 incoming 1142

(continues on next page)

17.2. 2. Read data 147

Niimpy Documentation, Release dev

(continued from previous page)

2019-08-08 22:32:25.256999936+03:00 incoming 1217
2019-08-08 22:43:45.834000128+03:00 incoming 1170
2020-01-09 01:55:16.996000+02:00 outgoing 1256
2020-01-09 02:06:09.790999808+02:00 outgoing 271
2020-01-09 02:08:03.896000+02:00 incoming 1079

datetime
2019-08-08 22:31:34.540000+03:00 2019-08-08 22:31:34.540000+03:00
2019-08-08 22:32:25.256999936+03:00 2019-08-08 22:32:25.256999936+03:00
2019-08-08 22:43:45.834000128+03:00 2019-08-08 22:43:45.834000128+03:00
2020-01-09 01:55:16.996000+02:00 2020-01-09 01:55:16.996000+02:00
2020-01-09 02:06:09.790999808+02:00 2020-01-09 02:06:09.790999808+02:00
2020-01-09 02:08:03.896000+02:00 2020-01-09 02:08:03.896000+02:00

By comparing the last two dataframes, we can see that sorting the values was a good move. For example, in the unsorted
dataframe, the earliest date for the user iGyXetHE3S8u was 2019-08-08 22:32:25; instead, for the sorted dataframe, the
earliest date for the user iGyXetHE3S8u is 2019-08-08 22:31:34. Small differences, but still important.

17.3 * TIP! Data format requirements (or what should our data look
like)

Data can take other shapes and formats. However, the niimpy data scheme requires it to be in a certain shape. This
means the dataframe needs to have at least the following characteristics: 1. One row per call. Each row should store
information about one call only 2. Each row’s index should be a timestamp 3. There should be at least four columns: -
index: date and time when the event happened (timestamp) - user: stores the user name whose data is analyzed. Each
user should have a unique name or hash (i.e. one hash for each unique user) - call_type: stores whether the call was
incoming, outgoing, or missed. The exact words incoming, outgoing, and missed should be used - call_duration: the
duration of the call in seconds 4. Columns additional to those listed in item 3 are allowed 5. The names of the columns
do not need to be exactly “user”, “call_type” or “call_duration” as we can pass our own names in an argument (to be
explained later).

Below is an example of a dataframe that complies with these minimum requirements

[7]: example_dataschema = data[['user','call_type','call_duration']]
example_dataschema.head(3)

[7]: user call_type call_duration
2019-08-08 22:31:34.540000+03:00 iGyXetHE3S8u incoming 1142
2019-08-08 22:32:25.256999936+03:00 iGyXetHE3S8u incoming 1217
2019-08-08 22:43:45.834000128+03:00 iGyXetHE3S8u incoming 1170

148 Chapter 17. Demo notebook for analyzing calls and SMS data

Niimpy Documentation, Release dev

17.4 4. Extracting features

There are two ways to extract features. We could use each function separately or we could use niimpy’s ready-made
wrapper. Both ways will require us to specify arguments to pass to the functions/wrapper in order to customize the way
the functions work. These arguments are specified in dictionaries. Let’s first understand how to extract features using
stand-alone functions.

17.4.1 4.1 Extract features using stand-alone functions

We can use niimpy’s functions to compute communication features. Each function will require two inputs: - (manda-
tory) dataframe that must comply with the minimum requirements (see ‘* TIP! Data requirements above) - (optional)
an argument dictionary for stand-alone functions

4.1.1 The argument dictionary for stand-alone functions (or how we specify the way a function works)

In this dictionary, we can input two main features to customize the way a stand-alone function works: - the name of
the columns to be preprocessed: Since the dataframe may have different columns, we need to specify which column
has the data we would like to be preprocessed. To do so, we can simply pass the name of the column to the argument
communication_column_name.

• the way we resample: resampling options are specified in niimpy as a dictionary. niimpy’s resampling and
aggregating relies on pandas.DataFrame.resample, so mastering the use of this pandas function will help
us greatly in niimpy’s preprocessing. Please familiarize yourself with the pandas resample function before
continuing. Briefly, to use the pandas.DataFrame.resample function, we need a rule. This rule states the
intervals we would like to use to resample our data (e.g., 15-seconds, 30-minutes, 1-hour). Neverthless, we
can input more details into the function to specify the exact sampling we would like. For example, we could
use the close argument if we would like to specify which side of the interval is closed, or we could use the offset
argument if we would like to start our binning with an offset, etc. There are plenty of options to use this command,
so we strongly recommend having pandas.DataFrame.resample documentation at hand. All features for the
pandas.DataFrame.resample will be specified in a dictionary where keys are the arguments’ names for the
pandas.DataFrame.resample, and the dictionary’s values are the values for each of these selected arguments.
This dictionary will be passed as a value to the key resample_args in niimpy.

Let’s see some basic examples of these dictionaries:

[8]: feature_dict1:{"communication_column_name":"call_duration","resample_args":{"rule":"1D"}}
feature_dict2:{"communication_column_name":"random_name","resample_args":{"rule":"30T"}}
feature_dict3:{"communication_column_name":"other_name","resample_args":{"rule":"45T",
→˓"origin":"end"}}

Here, we have three basic feature dictionaries.

• feature_dict1 will be used to analyze the data stored in the column call_duration in our dataframe. The
data will be binned in one day periods

• feature_dict2 will be used to analyze the data stored in the column random_name in our dataframe. The data
will be aggregated in 30-minutes bins

• feature_dict3 will be used to analyze the data stored in the column other_name in our dataframe. The data
will be binned in 45-minutes bins, but the binning will start from the last timestamp in the dataframe.

Default values: if no arguments are passed, niimpy’s default values are “call_duration” for the communica-
tion_column_name, and 30-min aggregation bins.

17.4. 4. Extracting features 149

Niimpy Documentation, Release dev

4.1.2 Using the functions

Now that we understand how the functions are customized, it is time we compute our first communication feature.
Suppose that we are interested in extracting the total duration of outgoing calls every 20 minutes. We will need niimpy’s
call_duration_total function, the data, and we will also need to create a dictionary to customize our function. Let’s
create the dictionary first

[9]: function_features={"communication_column_name":"call_duration","resample_args":{"rule":
→˓"20T"}}

Now let’s use the function to preprocess the data.

[10]: my_call_duration = com.call_duration_total(data, function_features)

my_call_duration is a multiindex dataframe, where the first level is the user, and the second level is the aggregated
timestamp. Let’s look at some values for one of the subjects.

[11]: my_call_duration.xs("jd9INuQ5BBlW", level="user")

[11]: outgoing_duration_total incoming_duration_total \
2020-01-09 01:40:00+02:00 1256.0 0.0
2020-01-09 02:00:00+02:00 2192.0 1079.0
2020-01-09 02:20:00+02:00 3696.0 4650.0
2020-01-09 02:40:00+02:00 174.0 645.0
2020-01-09 03:00:00+02:00 0.0 269.0

missed_duration_total
2020-01-09 01:40:00+02:00 0.0
2020-01-09 02:00:00+02:00 0.0
2020-01-09 02:20:00+02:00 0.0
2020-01-09 02:40:00+02:00 0.0
2020-01-09 03:00:00+02:00 0.0

Let’s remember how the original data looked like for this subject

[12]: data[data["user"]=="jd9INuQ5BBlW"].head(7)

[12]: user device time \
2020-01-09 01:55:16.996000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:06:09.790999808+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:08:03.896000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578528e+09
2020-01-09 02:10:06.573999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:11:37.648999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:12:31.164000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:21:45.877000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09

call_type call_duration \
2020-01-09 01:55:16.996000+02:00 outgoing 1256
2020-01-09 02:06:09.790999808+02:00 outgoing 271
2020-01-09 02:08:03.896000+02:00 incoming 1079
2020-01-09 02:10:06.573999872+02:00 missed 0
2020-01-09 02:11:37.648999936+02:00 outgoing 1070
2020-01-09 02:12:31.164000+02:00 outgoing 851
2020-01-09 02:21:45.877000192+02:00 incoming 1489

(continues on next page)

150 Chapter 17. Demo notebook for analyzing calls and SMS data

Niimpy Documentation, Release dev

(continued from previous page)

datetime
2020-01-09 01:55:16.996000+02:00 2020-01-09 01:55:16.996000+02:00
2020-01-09 02:06:09.790999808+02:00 2020-01-09 02:06:09.790999808+02:00
2020-01-09 02:08:03.896000+02:00 2020-01-09 02:08:03.896000+02:00
2020-01-09 02:10:06.573999872+02:00 2020-01-09 02:10:06.573999872+02:00
2020-01-09 02:11:37.648999936+02:00 2020-01-09 02:11:37.648999936+02:00
2020-01-09 02:12:31.164000+02:00 2020-01-09 02:12:31.164000+02:00
2020-01-09 02:21:45.877000192+02:00 2020-01-09 02:21:45.877000192+02:00

We see that the bins are indeed 20-minutes bins, however, they are adjusted to fixed, predetermined intervals, i.e. the
bin does not start on the time of the first datapoint. Instead, pandas starts the binning at 00:00:00 of everyday and
counts 20-minutes intervals from there.

If we want the binning to start from the first datapoint in our dataset, we need the origin parameter and a for loop.

[13]: users = list(data['user'].unique())
results = []
for user in users:

start_time = data[data["user"]==user].index.min()
function_features={"communication_column_name":"call_duration","resample_args":{"rule

→˓":"20T","origin":start_time}}
results.append(com.call_duration_total(data[data["user"]==user], function_features))

my_call_duration = pd.concat(results)

[14]: my_call_duration

[14]: outgoing_duration_total \
user
iGyXetHE3S8u 2019-08-09 07:11:34.540000+03:00 1322.0

2019-08-09 07:31:34.540000+03:00 959.0
2019-08-09 07:51:34.540000+03:00 0.0
2019-08-09 08:11:34.540000+03:00 0.0
2019-08-09 08:31:34.540000+03:00 0.0

... ...
2019-08-09 06:51:34.540000+03:00 0.0

jd9INuQ5BBlW 2020-01-09 01:55:16.996000+02:00 3448.0
2020-01-09 02:15:16.996000+02:00 3078.0
2020-01-09 02:35:16.996000+02:00 792.0
2020-01-09 02:55:16.996000+02:00 0.0

incoming_duration_total \
user
iGyXetHE3S8u 2019-08-09 07:11:34.540000+03:00 0

2019-08-09 07:31:34.540000+03:00 1034
2019-08-09 07:51:34.540000+03:00 921
2019-08-09 08:11:34.540000+03:00 0
2019-08-09 08:31:34.540000+03:00 0

... ...
2019-08-09 06:51:34.540000+03:00 0

jd9INuQ5BBlW 2020-01-09 01:55:16.996000+02:00 1079
2020-01-09 02:15:16.996000+02:00 1897
2020-01-09 02:35:16.996000+02:00 3398
2020-01-09 02:55:16.996000+02:00 269

(continues on next page)

17.4. 4. Extracting features 151

Niimpy Documentation, Release dev

(continued from previous page)

missed_duration_total
user
iGyXetHE3S8u 2019-08-09 07:11:34.540000+03:00 0.0

2019-08-09 07:31:34.540000+03:00 0.0
2019-08-09 07:51:34.540000+03:00 0.0
2019-08-09 08:11:34.540000+03:00 0.0
2019-08-09 08:31:34.540000+03:00 0.0

... ...
2019-08-09 06:51:34.540000+03:00 0.0

jd9INuQ5BBlW 2020-01-09 01:55:16.996000+02:00 0.0
2020-01-09 02:15:16.996000+02:00 0.0
2020-01-09 02:35:16.996000+02:00 0.0
2020-01-09 02:55:16.996000+02:00 0.0

[319 rows x 3 columns]

17.4.2 4.2 Extract features using the wrapper

We can use niimpy’s ready-made wrapper to extract one or several features at the same time. The wrapper will require
two inputs: - (mandatory) dataframe that must comply with the minimum requirements (see ‘* TIP! Data requirements
above) - (optional) an argument dictionary for wrapper

4.2.1 The argument dictionary for wrapper (or how we specify the way the wrapper works)

This argument dictionary will use dictionaries created for stand-alone functions. If you do not know how to create
those argument dictionaries, please read the section 4.1.1 The argument dictionary for stand-alone functions (or
how we specify the way a function works) first.

The wrapper dictionary is simple. Its keys are the names of the features we want to compute. Its values are argument
dictionaries created for each stand-alone function we will employ. Let’s see some examples of wrapper dictionaries:

[15]: wrapper_features1 = {com.call_duration_total:{"communication_column_name":"call_duration
→˓","resample_args":{"rule":"1D"}},

com.call_count:{"communication_column_name":"call_duration",
→˓"resample_args":{"rule":"1D"}}}

• wrapper_features1 will be used to analyze two features, call_duration_total and call_count. For the
feature call_duration_total, we will use the data stored in the column call_duration in our dataframe and the
data will be binned in one day periods. For the feature call_count, we will use the data stored in the column
call_duration in our dataframe and the data will be binned in one day periods.

[16]: wrapper_features2 = {com.call_duration_mean:{"communication_column_name":"random_name",
→˓"resample_args":{"rule":"1D"}},

com.call_duration_median:{"communication_column_name":"random_name",
→˓"resample_args":{"rule":"5H","offset":"5min"}}}

• wrapper_features2 will be used to analyze two features, call_duration_mean and
call_duration_median. For the feature call_duration_mean, we will use the data stored in the col-
umn random_name in our dataframe and the data will be binned in one day periods. For the feature
call_duration_median, we will use the data stored in the column random_name in our dataframe and the data
will be binned in 5-hour periods with a 5-minute offset.

152 Chapter 17. Demo notebook for analyzing calls and SMS data

Niimpy Documentation, Release dev

[17]: wrapper_features3 = {com.call_duration_total:{"communication_column_name":"one_name",
→˓"resample_args":{"rule":"1D","offset":"5min"}},

com.call_count:{"communication_column_name":"one_name","resample_
→˓args":{"rule":"5H"}},

com.call_duration_mean:{"communication_column_name":"another_name",
→˓"resample_args":{"rule":"30T","origin":"end_day"}}}

• wrapper_features3 will be used to analyze three features, call_duration_total, call_count, and
call_duration_mean. For the feature call_duration_total, we will use the data stored in the column one_name
and the data will be binned in one day periods with a 5-min offset. For the feature call_count, we will use the
data stored in the column one_name in our dataframe and the data will be binned in 5-hour periods. Finally, for
the feature call_duration_mean, we will use the data stored in the column another_name in our dataframe and
the data will be binned in 30-minute periods and the origin of the bins will be the ceiling midnight of the last
day.

Default values: if no arguments are passed, niimpy’s default values are “call_duration” for the communica-
tion_column_name, and 30-min aggregation bins. Moreover, the wrapper will compute all the available functions
in absence of the argument dictionary.

4.2.2 Using the wrapper

Now that we understand how the wrapper is customized, it is time we compute our first communication feature using the
wrapper. Suppose that we are interested in extracting the call total duration every 20 minutes. We will need niimpy’s
extract_features_comms function, the data, and we will also need to create a dictionary to customize our function.
Let’s create the dictionary first

[18]: wrapper_features1 = {com.call_duration_total:{"communication_column_name":"call_duration
→˓","resample_args":{"rule":"20T"}}}

Now let’s use the wrapper

[19]: results_wrapper = com.extract_features_comms(data, features=wrapper_features1)
results_wrapper.head(5)

computing <function call_duration_total at 0x000002521D883AC0>...

[19]: outgoing_duration_total \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 1322.0

2019-08-09 07:20:00+03:00 959.0
2019-08-09 07:40:00+03:00 0.0
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:20:00+03:00 0.0

incoming_duration_total \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0

2019-08-09 07:20:00+03:00 1034.0
2019-08-09 07:40:00+03:00 790.0
2019-08-09 08:00:00+03:00 131.0
2019-08-09 08:20:00+03:00 0.0

missed_duration_total
user

(continues on next page)

17.4. 4. Extracting features 153

Niimpy Documentation, Release dev

(continued from previous page)

iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0
2019-08-09 07:20:00+03:00 0.0
2019-08-09 07:40:00+03:00 0.0
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:20:00+03:00 0.0

Our first attempt was succesful. Now, let’s try something more. Let’s assume we want to compute the call_duration
and call_count in 20-minutes bin.

[20]: wrapper_features2 = {com.call_duration_total:{"communication_column_name":"call_duration
→˓","resample_args":{"rule":"20T"}},

com.call_count:{"communication_column_name":"call_duration",
→˓"resample_args":{"rule":"20T"}}}
results_wrapper = com.extract_features_comms(data, features=wrapper_features2)
results_wrapper.head(5)

computing <function call_duration_total at 0x000002521D883AC0>...
computing <function call_count at 0x000002525E874790>...

[20]: outgoing_duration_total \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 1322.0

2019-08-09 07:20:00+03:00 959.0
2019-08-09 07:40:00+03:00 0.0
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:20:00+03:00 0.0

incoming_duration_total \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0

2019-08-09 07:20:00+03:00 1034.0
2019-08-09 07:40:00+03:00 790.0
2019-08-09 08:00:00+03:00 131.0
2019-08-09 08:20:00+03:00 0.0

missed_duration_total outgoing_count \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0 1.0

2019-08-09 07:20:00+03:00 0.0 1.0
2019-08-09 07:40:00+03:00 0.0 0.0
2019-08-09 08:00:00+03:00 0.0 0.0
2019-08-09 08:20:00+03:00 0.0 0.0

incoming_count missed_count
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0 0.0

2019-08-09 07:20:00+03:00 1.0 1.0
2019-08-09 07:40:00+03:00 1.0 0.0
2019-08-09 08:00:00+03:00 1.0 0.0
2019-08-09 08:20:00+03:00 0.0 0.0

Great! Another successful attempt. We see from the results that more columns were added with the required cal-
culations. This is how the wrapper works when all features are computed with the same bins. Now, let’s see how
the wrapper performs when each function has different binning requirements. Let’s assume we need to compute the

154 Chapter 17. Demo notebook for analyzing calls and SMS data

Niimpy Documentation, Release dev

call_duration_mean every day, and the call_duration_median every 5 hours with an offset of 5 minutes.

[21]: wrapper_features3 = {com.call_duration_mean:{"communication_column_name":"call_duration",
→˓"resample_args":{"rule":"1D"}},

com.call_duration_median:{"communication_column_name":"call_duration
→˓","resample_args":{"rule":"5H","offset":"5min"}}}
results_wrapper = com.extract_features_comms(data, features=wrapper_features3)
results_wrapper.head(5)

computing <function call_duration_mean at 0x000002525E8745E0>...
computing <function call_duration_median at 0x000002525E874670>...

[21]: outgoing_duration_mean \
user
iGyXetHE3S8u 2019-08-09 00:00:00+03:00 1140.5

2019-08-10 00:00:00+03:00 1363.0
2019-08-11 00:00:00+03:00 0.0
2019-08-12 00:00:00+03:00 209.0
2019-08-13 00:00:00+03:00 803.0

incoming_duration_mean \
user
iGyXetHE3S8u 2019-08-09 00:00:00+03:00 651.666667

2019-08-10 00:00:00+03:00 1298.000000
2019-08-11 00:00:00+03:00 0.000000
2019-08-12 00:00:00+03:00 715.000000
2019-08-13 00:00:00+03:00 591.000000

missed_duration_mean \
user
iGyXetHE3S8u 2019-08-09 00:00:00+03:00 0.0

2019-08-10 00:00:00+03:00 0.0
2019-08-11 00:00:00+03:00 0.0
2019-08-12 00:00:00+03:00 0.0
2019-08-13 00:00:00+03:00 0.0

outgoing_duration_median \
user
iGyXetHE3S8u 2019-08-09 00:00:00+03:00 NaN

2019-08-10 00:00:00+03:00 NaN
2019-08-11 00:00:00+03:00 NaN
2019-08-12 00:00:00+03:00 NaN
2019-08-13 00:00:00+03:00 NaN

incoming_duration_median \
user
iGyXetHE3S8u 2019-08-09 00:00:00+03:00 NaN

2019-08-10 00:00:00+03:00 NaN
2019-08-11 00:00:00+03:00 NaN
2019-08-12 00:00:00+03:00 NaN
2019-08-13 00:00:00+03:00 NaN

missed_duration_median
user

(continues on next page)

17.4. 4. Extracting features 155

Niimpy Documentation, Release dev

(continued from previous page)

iGyXetHE3S8u 2019-08-09 00:00:00+03:00 NaN
2019-08-10 00:00:00+03:00 NaN
2019-08-11 00:00:00+03:00 NaN
2019-08-12 00:00:00+03:00 NaN
2019-08-13 00:00:00+03:00 NaN

[22]: results_wrapper.tail(5)

[22]: outgoing_duration_mean \
user
iGyXetHE3S8u 2019-08-12 09:05:00+03:00 NaN

2019-08-12 14:05:00+03:00 NaN
2019-08-12 19:05:00+03:00 NaN
2019-08-13 00:05:00+03:00 NaN
2019-08-13 05:05:00+03:00 NaN

incoming_duration_mean \
user
iGyXetHE3S8u 2019-08-12 09:05:00+03:00 NaN

2019-08-12 14:05:00+03:00 NaN
2019-08-12 19:05:00+03:00 NaN
2019-08-13 00:05:00+03:00 NaN
2019-08-13 05:05:00+03:00 NaN

missed_duration_mean \
user
iGyXetHE3S8u 2019-08-12 09:05:00+03:00 NaN

2019-08-12 14:05:00+03:00 NaN
2019-08-12 19:05:00+03:00 NaN
2019-08-13 00:05:00+03:00 NaN
2019-08-13 05:05:00+03:00 NaN

outgoing_duration_median \
user
iGyXetHE3S8u 2019-08-12 09:05:00+03:00 0.0

2019-08-12 14:05:00+03:00 0.0
2019-08-12 19:05:00+03:00 0.0
2019-08-13 00:05:00+03:00 0.0
2019-08-13 05:05:00+03:00 0.0

incoming_duration_median \
user
iGyXetHE3S8u 2019-08-12 09:05:00+03:00 0.0

2019-08-12 14:05:00+03:00 0.0
2019-08-12 19:05:00+03:00 715.0
2019-08-13 00:05:00+03:00 0.0
2019-08-13 05:05:00+03:00 591.0

missed_duration_median
user
iGyXetHE3S8u 2019-08-12 09:05:00+03:00 0.0

2019-08-12 14:05:00+03:00 0.0
(continues on next page)

156 Chapter 17. Demo notebook for analyzing calls and SMS data

Niimpy Documentation, Release dev

(continued from previous page)

2019-08-12 19:05:00+03:00 0.0
2019-08-13 00:05:00+03:00 0.0
2019-08-13 05:05:00+03:00 0.0

The output is once again a dataframe. In this case, two aggregations are shown. The first one is the daily aggregation
computed for the call_duration_mean feature (head). The second one is the 5-hour aggregation period with 5-
min offset for the call_duration_median (tail). We must note that because the call_duration_medianfeature
is not required to be aggregated daily, the daily aggregation timestamps have a NaN value. Similarly, because the
call_duration_meanis not required to be aggregated in 5-hour windows, its values are NaN for all subjects.

4.2.3 Wrapper and its default option

The default option will compute all features in 30-minute aggregation windows. To use the
extract_features_comms function with its default options, simply call the function.

[23]: default = com.extract_features_comms(data, features=None)

computing <function call_duration_total at 0x000002521D883AC0>...
computing <function call_duration_mean at 0x000002525E8745E0>...
computing <function call_duration_median at 0x000002525E874670>...
computing <function call_duration_std at 0x000002525E874700>...
computing <function call_count at 0x000002525E874790>...
computing <function call_outgoing_incoming_ratio at 0x000002525E874820>...

The function prints the computed features so you can track its process. Now let’s have a look at the outputs

[24]: default.head()

[24]: outgoing_duration_total \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 1322.0

2019-08-09 07:30:00+03:00 959.0
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

incoming_duration_total \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0

2019-08-09 07:30:00+03:00 1824.0
2019-08-09 08:00:00+03:00 131.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

missed_duration_total \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0

2019-08-09 07:30:00+03:00 0.0
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

outgoing_duration_mean \
(continues on next page)

17.4. 4. Extracting features 157

Niimpy Documentation, Release dev

(continued from previous page)

user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 1322.0

2019-08-09 07:30:00+03:00 959.0
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

incoming_duration_mean \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0

2019-08-09 07:30:00+03:00 912.0
2019-08-09 08:00:00+03:00 131.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

missed_duration_mean \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0

2019-08-09 07:30:00+03:00 0.0
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

outgoing_duration_median \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 1322.0

2019-08-09 07:30:00+03:00 959.0
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

incoming_duration_median \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0

2019-08-09 07:30:00+03:00 912.0
2019-08-09 08:00:00+03:00 131.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

missed_duration_median \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0

2019-08-09 07:30:00+03:00 0.0
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

outgoing_duration_std \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0

2019-08-09 07:30:00+03:00 0.0
2019-08-09 08:00:00+03:00 0.0

(continues on next page)

158 Chapter 17. Demo notebook for analyzing calls and SMS data

Niimpy Documentation, Release dev

(continued from previous page)

2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

incoming_duration_std \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.000000

2019-08-09 07:30:00+03:00 172.534055
2019-08-09 08:00:00+03:00 0.000000
2019-08-09 08:30:00+03:00 0.000000
2019-08-09 09:00:00+03:00 0.000000

missed_duration_std outgoing_count \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0 1.0

2019-08-09 07:30:00+03:00 0.0 1.0
2019-08-09 08:00:00+03:00 0.0 0.0
2019-08-09 08:30:00+03:00 0.0 0.0
2019-08-09 09:00:00+03:00 0.0 0.0

incoming_count missed_count \
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 0.0 0.0

2019-08-09 07:30:00+03:00 2.0 1.0
2019-08-09 08:00:00+03:00 1.0 0.0
2019-08-09 08:30:00+03:00 0.0 0.0
2019-08-09 09:00:00+03:00 0.0 0.0

outgoing_incoming_ratio
user
iGyXetHE3S8u 2019-08-09 07:00:00+03:00 inf

2019-08-09 07:30:00+03:00 0.5
2019-08-09 08:00:00+03:00 0.0
2019-08-09 08:30:00+03:00 0.0
2019-08-09 09:00:00+03:00 0.0

17.4.3 4.3 SMS computations

niimpy includes one function to count the outgoing and incoming SMS. This function is not automatically called by
extract_features_comms, but it can be used as a standalone. Let’s see a quick example where we will upload the
SMS data and preprocess it.

[25]: data = niimpy.read_csv(config.MULTIUSER_AWARE_MESSAGES_PATH, tz='Europe/Helsinki')
data.head()

[25]: user device time \
2020-01-09 02:34:46.644999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:34:58.803000064+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:35:37.611000064+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:55:40.640000+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578531e+09
2020-01-09 02:55:50.914000128+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578531e+09

(continues on next page)

17.4. 4. Extracting features 159

Niimpy Documentation, Release dev

(continued from previous page)

message_type \
2020-01-09 02:34:46.644999936+02:00 incoming
2020-01-09 02:34:58.803000064+02:00 outgoing
2020-01-09 02:35:37.611000064+02:00 outgoing
2020-01-09 02:55:40.640000+02:00 outgoing
2020-01-09 02:55:50.914000128+02:00 incoming

datetime
2020-01-09 02:34:46.644999936+02:00 2020-01-09 02:34:46.644999936+02:00
2020-01-09 02:34:58.803000064+02:00 2020-01-09 02:34:58.803000064+02:00
2020-01-09 02:35:37.611000064+02:00 2020-01-09 02:35:37.611000064+02:00
2020-01-09 02:55:40.640000+02:00 2020-01-09 02:55:40.640000+02:00
2020-01-09 02:55:50.914000128+02:00 2020-01-09 02:55:50.914000128+02:00

[26]: sms = com.sms_count(data, feature_functions={})
sms.head()

[26]: outgoing_count incoming_count
user
iGyXetHE3S8u 2019-08-13 08:30:00+03:00 1 1.0

2019-08-13 09:00:00+03:00 0 0.0
2019-08-13 09:30:00+03:00 2 1.0
2019-08-13 10:00:00+03:00 0 0.0
2019-08-13 10:30:00+03:00 0 0.0

Similar to the calls functions, we need to define the feature_functions dictionary. Likewise, if we leave it empty,
then all data is aggregated in 30-minutes bins. We see that the function also differentiates between the incoming and
outgoing messages. Let’s quickly summarize the data requirements for SMS

17.5 * TIP! Data format requirements for SMS (special case)

Data can take other shapes and formats. However, the niimpy data scheme requires it to be in a certain shape. This
means the dataframe needs to have at least the following characteristics: 1. One row per call. Each row should store
information about one call only 2. Each row’s index should be a timestamp 3. There should be at least four columns: -
index: date and time when the event happened (timestamp) - user: stores the user name whose data is analyzed. Each
user should have a unique name or hash (i.e. one hash for each unique user) - message_type: determines if the message
was sent (outgoing) or received (incoming) 4. Columns additional to those listed in item 3 are allowed 5. The names
of the columns do not need to be exactly “user”, “message_type”

17.6 5. Implementing own features

If none of the provided functions suits well, We can implement our own customized features easily. To do so, we need
to define a function that accepts a dataframe and returns a dataframe. The returned object should be indexed by user and
timestamps (multiindex). To make the feature readily available in the default options, we need add the call prefix to the
new function (e.g. call_my-new-feature). Let’s assume we need a new function that counts all calls, independent
of their direction (outgoing, incoming, etc.). Let’s first define the function

[27]: def call_count_all(df,feature_functions=None):
if not "communication_column_name" in feature_functions:

(continues on next page)

160 Chapter 17. Demo notebook for analyzing calls and SMS data

Niimpy Documentation, Release dev

(continued from previous page)

col_name = "call_duration"
else:

col_name = feature_functions["communication_column_name"]
if not "resample_args" in feature_functions.keys():

feature_functions["resample_args"] = {"rule":"30T"}

if len(df)>0:
result = df.groupby("user")[col_name].resample(**feature_functions["resample_args

→˓"]).count()
result.rename("call_count_all", inplace=True)
result.to_frame()

return result

Then, we can call our new function in the stand-alone way or using the extract_features_comms function. Because
the stand-alone way is the common way to call functions in python, we will not show it. Instead, we will show how to
integrate this new function to the wrapper. Let’s read again the data and assume we want the default behavior of the
wrapper.

[28]: data = niimpy.read_csv(config.MULTIUSER_AWARE_CALLS_PATH, tz='Europe/Helsinki')
customized_features = com.extract_features_comms(data, features={call_count_all: {}})

computing <function call_count_all at 0x000002525EBBD900>...

[29]: customized_features.head()

[29]: call_count_all
user
iGyXetHE3S8u 2019-08-08 22:30:00+03:00 5

2019-08-08 23:00:00+03:00 0
2019-08-08 23:30:00+03:00 0
2019-08-09 00:00:00+03:00 0
2019-08-09 00:30:00+03:00 0

[]:

17.6. 5. Implementing own features 161

Niimpy Documentation, Release dev

162 Chapter 17. Demo notebook for analyzing calls and SMS data

CHAPTER

EIGHTEEN

DEMO NOTEBOOK FOR ANALYZING SCREEN ON/OFF DATA

18.1 Introduction

Screen data refers to the information about the status of the screen as reported by Android. These data can reveal
important information about people’s circadian rhythm, social patterns, and activity. Screen data is an event data,
this means that it cannot be sampled at a regular frequency. We just have information about the events that occured.
However, some factors may interfere with the correct detection of all events (e.g. when the phone’s battery is depleated).
Therefore, to correctly process screen data, we need to take into account other information like the battery status of
the phone. This may complicate the preprocessing. To address this, niimpy includes a set of functions to clean,
downsample, and extract features from screen data while taking into account factors like the battery level. The functions
allow us to extract the following features:

• screen_off: reports when the screen has been turned off

• screen_count: number of times the screen has turned on, off, or has been in use

• screen_duration: duration in seconds of the screen on, off, and in use statuses

• screen_duration_min: minimum duration in seconds of the screen on, off, and in use statuses

• screen_duration_max: maximum duration in seconds of the screen on, off, and in use statuses

• screen_duration_median: median duration in seconds of the screen on, off, and in use statuses

• screen_duration_mean: mean duration in seconds of the screen on, off, and in use statuses

• screen_duration_std: standard deviation of the duration in seconds of the screen on, off, and in use statuses

• screen_first_unlock: reports the first time when the phone was unlocked every day

• extract_features_screen: wrapper-like function to extract several features at the same time

In addition, the screen module has three internal functions that help classify the events and calculate their status duration.

In the following, we will analyze screen data provided by niimpy as an example to illustrate the use of screen data.

18.2 2. Read data

Let’s start by reading the example data provided in niimpy. These data have already been shaped in a format that meets
the requirements of the data schema. Let’s start by importing the needed modules. Firstly we will import the niimpy
package and then we will import the module we will use (screen) and give it a short name for use convenience.

[1]: import niimpy
from niimpy import config
import niimpy.preprocessing.screen as s

(continues on next page)

163

Niimpy Documentation, Release dev

(continued from previous page)

import pandas as pd
import warnings
warnings.filterwarnings("ignore")

Now let’s read the example data provided in niimpy. The example data is in csv format, so we need to use the
read_csv function. When reading the data, we can specify the timezone where the data was collected. This will help
us handle daylight saving times easier. We can specify the timezone with the argument tz. The output is a dataframe.
We can also check the number of rows and columns in the dataframe.

[2]: data = niimpy.read_csv(config.MULTIUSER_AWARE_SCREEN_PATH, tz='Europe/Helsinki')
data.shape

[2]: (277, 5)

The data was succesfully read. We can see that there are 277 datapoints with 5 columns in the dataset. However, we
do not know yet what the data really looks like, so let’s have a quick look:

[3]: data.head()

[3]: user device time \
2020-01-09 02:06:41.573999872+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578528e+09
2020-01-09 02:09:29.152000+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:09:32.790999808+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:11:41.996000+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:16:19.010999808+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09

screen_status \
2020-01-09 02:06:41.573999872+02:00 0
2020-01-09 02:09:29.152000+02:00 1
2020-01-09 02:09:32.790999808+02:00 3
2020-01-09 02:11:41.996000+02:00 0
2020-01-09 02:16:19.010999808+02:00 1

datetime
2020-01-09 02:06:41.573999872+02:00 2020-01-09 02:06:41.573999872+02:00
2020-01-09 02:09:29.152000+02:00 2020-01-09 02:09:29.152000+02:00
2020-01-09 02:09:32.790999808+02:00 2020-01-09 02:09:32.790999808+02:00
2020-01-09 02:11:41.996000+02:00 2020-01-09 02:11:41.996000+02:00
2020-01-09 02:16:19.010999808+02:00 2020-01-09 02:16:19.010999808+02:00

[4]: data.tail()

[4]: user device time \
2019-09-08 17:17:14.216000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567952e+09
2019-09-08 17:17:31.966000128+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567952e+09
2019-09-08 20:50:07.360000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567965e+09
2019-09-08 20:50:08.139000064+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567965e+09
2019-09-08 20:53:12.960000+03:00 iGyXetHE3S8u Cq9vueHh3zVs 1.567965e+09

screen_status \
2019-09-08 17:17:14.216000+03:00 1
2019-09-08 17:17:31.966000128+03:00 0
2019-09-08 20:50:07.360000+03:00 3
2019-09-08 20:50:08.139000064+03:00 1

(continues on next page)

164 Chapter 18. Demo notebook for analyzing screen on/off data

Niimpy Documentation, Release dev

(continued from previous page)

2019-09-08 20:53:12.960000+03:00 0

datetime
2019-09-08 17:17:14.216000+03:00 2019-09-08 17:17:14.216000+03:00
2019-09-08 17:17:31.966000128+03:00 2019-09-08 17:17:31.966000128+03:00
2019-09-08 20:50:07.360000+03:00 2019-09-08 20:50:07.360000+03:00
2019-09-08 20:50:08.139000064+03:00 2019-09-08 20:50:08.139000064+03:00
2019-09-08 20:53:12.960000+03:00 2019-09-08 20:53:12.960000+03:00

By exploring the head and tail of the dataframe we can form an idea of its entirety. From the data, we can see that:

• rows are observations, indexed by timestamps, i.e. each row represents a screen event at a given time and date

• columns are characteristics for each observation, for example, the user whose data we are analyzing

• there are at least two different users in the dataframe

• the main column is screen_status. This screen status is coded in numbers as: 0=off, 1=on, 2=locked, 3=un-
locked.

18.3 * TIP! Data format requirements (or what should our data look
like)

Data can take other shapes and formats. However, the niimpy data scheme requires it to be in a certain shape. This
means the dataframe needs to have at least the following characteristics: 1. One row per screen status. Each row should
store information about one screen status only 2. Each row’s index should be a timestamp 3. There should be at least
three columns: - index: date and time when the event happened (timestamp) - user: stores the user name whose data is
analyzed. Each user should have a unique name or hash (i.e. one hash for each unique user) - screen_status: stores the
screen status (0,1,2, or 3) as defined by Android. 4. Columns additional to those listed in item 3 are allowed 5. The
names of the columns do not need to be exactly “screen_status” as we can pass our own names in an argument (to be
explained later).

Below is an example of a dataframe that complies with these minimum requirements

[5]: example_dataschema = data[['user','screen_status']]
example_dataschema.head(3)

[5]: user screen_status
2020-01-09 02:06:41.573999872+02:00 jd9INuQ5BBlW 0
2020-01-09 02:09:29.152000+02:00 jd9INuQ5BBlW 1
2020-01-09 02:09:32.790999808+02:00 jd9INuQ5BBlW 3

18.3.1 A few words on missing data

Missing data for screen is difficult to detect. Firstly, this sensor is triggered by events and not sampled at a fixed
frequency. Secondly, different phones, OS, and settings change how the screen is turned on/off; for example, one
phone may go from OFF to ON to UNLOCKED, while another phone may go from OFF to UNLOCKED directly.
Thirdly, events not related to the screen may affect its behavior, e.g. battery running out. Neverthless, there are some
events transitions that are impossible to have, like a status to itself (e.g. two consecutive 0s). These imposible statuses
helps us determine the missing data.

18.3. * TIP! Data format requirements (or what should our data look like) 165

Niimpy Documentation, Release dev

18.3.2 A few words on the classification of the events

We can know the status of the screen at a certain timepoint. However, we need a bit more to know the duration and
the meaning of it. Consequently, we need to look at the numbers of two consecutive events and classify the transitions
(going from one state to another consecutively) as: - from 3 to 0,1,2: the phone was in use - from 1 to 0,1,3: the phone
was on - from 0 to 1,2,3: the phone was off

Other transitions are irrelevant.

18.3.3 A few words on the role of the battery

As mentioned before, battery statuses can affect the screen behavior. In particular, when the battery is depleated and
the phone is shut down automatically, the screen sensor does not cast any events, so even when the screen is technically
OFF because the phone does not have any battery left, we will not see that 0 in the screen status column. Thus, it is
important to take into account the battery information when analyzing screen data. niimpy’s screen module is adapted
to take into account the battery data. Since we do have some battery data, we will load it.

[6]: bat_data = niimpy.read_csv(config.MULTIUSER_AWARE_BATTERY_PATH, tz='Europe/Helsinki')
bat_data.head()

[6]: user device time \
2020-01-09 02:20:02.924999936+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:21:30.405999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:24:12.805999872+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578529e+09
2020-01-09 02:35:38.561000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09
2020-01-09 02:35:38.953000192+02:00 jd9INuQ5BBlW 3p83yASkOb_B 1.578530e+09

battery_level battery_status \
2020-01-09 02:20:02.924999936+02:00 74 3
2020-01-09 02:21:30.405999872+02:00 73 3
2020-01-09 02:24:12.805999872+02:00 72 3
2020-01-09 02:35:38.561000192+02:00 72 2
2020-01-09 02:35:38.953000192+02:00 72 2

battery_health battery_adaptor \
2020-01-09 02:20:02.924999936+02:00 2 0
2020-01-09 02:21:30.405999872+02:00 2 0
2020-01-09 02:24:12.805999872+02:00 2 0
2020-01-09 02:35:38.561000192+02:00 2 0
2020-01-09 02:35:38.953000192+02:00 2 2

datetime
2020-01-09 02:20:02.924999936+02:00 2020-01-09 02:20:02.924999936+02:00
2020-01-09 02:21:30.405999872+02:00 2020-01-09 02:21:30.405999872+02:00
2020-01-09 02:24:12.805999872+02:00 2020-01-09 02:24:12.805999872+02:00
2020-01-09 02:35:38.561000192+02:00 2020-01-09 02:35:38.561000192+02:00
2020-01-09 02:35:38.953000192+02:00 2020-01-09 02:35:38.953000192+02:00

In this case, we are interested in the battery_status information. This is standard information provided by An-
droid. However, if the dataframe has this information in a column with a different name, we can use the argument
battery_column_name similarly to the use of screen_column_name (more info about this topic below).

166 Chapter 18. Demo notebook for analyzing screen on/off data

Niimpy Documentation, Release dev

18.4 4. Extracting features

There are two ways to extract features. We could use each function separately or we could use niimpy’s ready-made
wrapper. Both ways will require us to specify arguments to pass to the functions/wrapper in order to customize the way
the functions work. These arguments are specified in dictionaries. Let’s first understand how to extract features using
stand-alone functions.

We can use niimpy’s functions to compute communication features. Each function will require two inputs: - (manda-
tory) dataframe that must comply with the minimum requirements (see ‘* TIP! Data requirements above) - (optional)
an argument dictionary for stand-alone functions

18.4.1 4.1.1 The argument dictionary for stand-alone functions (or how we specify
the way a function works)

In this dictionary, we can input two main features to customize the way a stand-alone function works: - the name of
the columns to be preprocessed: Since the dataframe may have different columns, we need to specify which column
has the data we would like to be preprocessed. To do so, we can simply pass the name of the column to the argument
screen_column_name.

• the way we resample: resampling options are specified in niimpy as a dictionary. niimpy’s resampling and
aggregating relies on pandas.DataFrame.resample, so mastering the use of this pandas function will help
us greatly in niimpy’s preprocessing. Please familiarize yourself with the pandas resample function before
continuing. Briefly, to use the pandas.DataFrame.resample function, we need a rule. This rule states the
intervals we would like to use to resample our data (e.g., 15-seconds, 30-minutes, 1-hour). Neverthless, we
can input more details into the function to specify the exact sampling we would like. For example, we could
use the close argument if we would like to specify which side of the interval is closed, or we could use the offset
argument if we would like to start our binning with an offset, etc. There are plenty of options to use this command,
so we strongly recommend having pandas.DataFrame.resample documentation at hand. All features for the
pandas.DataFrame.resample will be specified in a dictionary where keys are the arguments’ names for the
pandas.DataFrame.resample, and the dictionary’s values are the values for each of these selected arguments.
This dictionary will be passed as a value to the key resample_args in niimpy.

Let’s see some basic examples of these dictionaries:

[7]: feature_dict1:{"screen_column_name":"screen_status","resample_args":{"rule":"1D"}}
feature_dict2:{"screen_column_name":"random_name","resample_args":{"rule":"30T"}}
feature_dict3:{"screen_column_name":"other_name","resample_args":{"rule":"45T","origin":
→˓"end"}}

Here, we have three basic feature dictionaries.

• feature_dict1 will be used to analyze the data stored in the column screen_status in our dataframe. The
data will be binned in one day periods

• feature_dict2 will be used to analyze the data stored in the column random_name in our dataframe. The data
will be aggregated in 30-minutes bins

• feature_dict3 will be used to analyze the data stored in the column other_name in our dataframe. The data
will be binned in 45-minutes bins, but the binning will start from the last timestamp in the dataframe.

Default values: if no arguments are passed, niimpy’s default values are “screen_status” for the screen_column_name,
and 30-min aggregation bins.

18.4. 4. Extracting features 167

Niimpy Documentation, Release dev

18.4.2 4.1.2 Using the functions

Now that we understand how the functions are customized, it is time we compute our first communication feature.
Suppose that we are interested in extracting the total duration of outgoing calls every 20 minutes. We will need niimpy’s
screen_count function, the data, and we will also need to create a dictionary to customize our function. Let’s create
the dictionary first

[8]: function_features={"screen_column_name":"screen_status","resample_args":{"rule":"20T"}}

Now let’s use the function to preprocess the data.

[9]: my_screen_count = s.screen_count(data, bat_data, function_features)

my_screen_count is a multiindex dataframe, where the first level is the user, and the second level is the aggregated
timestamp. Let’s look at some values for one of the subjects.

[10]: my_screen_count.xs("jd9INuQ5BBlW", level="user")

[10]: screen_on_count screen_off_count screen_use_count
2020-01-09 02:00:00+02:00 2 2 2
2020-01-09 02:20:00+02:00 3 4 2
2020-01-09 02:40:00+02:00 2 2 1
2020-01-09 03:00:00+02:00 0 0 0
2020-01-09 03:20:00+02:00 0 0 0
...
2020-01-09 21:40:00+02:00 1 1 0
2020-01-09 22:00:00+02:00 1 1 0
2020-01-09 22:20:00+02:00 0 0 0
2020-01-09 22:40:00+02:00 0 0 0
2020-01-09 23:00:00+02:00 4 3 0

[64 rows x 3 columns]

Let’s remember how the original data looked like for this subject

[11]: data[data["user"]=="jd9INuQ5BBlW"].head(7)

[11]: user device time \
2020-01-09 02:06:41.573999872+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578528e+09
2020-01-09 02:09:29.152000+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:09:32.790999808+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:11:41.996000+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:16:19.010999808+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:16:29.648999936+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09
2020-01-09 02:16:29.657999872+02:00 jd9INuQ5BBlW OWd1Uau8POix 1.578529e+09

screen_status \
2020-01-09 02:06:41.573999872+02:00 0
2020-01-09 02:09:29.152000+02:00 1
2020-01-09 02:09:32.790999808+02:00 3
2020-01-09 02:11:41.996000+02:00 0
2020-01-09 02:16:19.010999808+02:00 1
2020-01-09 02:16:29.648999936+02:00 0
2020-01-09 02:16:29.657999872+02:00 2

(continues on next page)

168 Chapter 18. Demo notebook for analyzing screen on/off data

Niimpy Documentation, Release dev

(continued from previous page)

datetime
2020-01-09 02:06:41.573999872+02:00 2020-01-09 02:06:41.573999872+02:00
2020-01-09 02:09:29.152000+02:00 2020-01-09 02:09:29.152000+02:00
2020-01-09 02:09:32.790999808+02:00 2020-01-09 02:09:32.790999808+02:00
2020-01-09 02:11:41.996000+02:00 2020-01-09 02:11:41.996000+02:00
2020-01-09 02:16:19.010999808+02:00 2020-01-09 02:16:19.010999808+02:00
2020-01-09 02:16:29.648999936+02:00 2020-01-09 02:16:29.648999936+02:00
2020-01-09 02:16:29.657999872+02:00 2020-01-09 02:16:29.657999872+02:00

We see that the bins are indeed 20-minutes bins, however, they are adjusted to fixed, predetermined intervals, i.e. the
bin does not start on the time of the first datapoint. Instead, pandas starts the binning at 00:00:00 of everyday and
counts 20-minutes intervals from there.

If we want the binning to start from the first datapoint in our dataset, we need the origin parameter and a for loop.

[12]: users = list(data['user'].unique())
results = []
for user in users:

start_time = data[data["user"]==user].index.min()
function_features={"screen_column_name":"screen_status","resample_args":{"rule":"20T

→˓","origin":start_time}}
results.append(s.screen_count(data[data["user"]==user],bat_data[bat_data["user

→˓"]==user], function_features))
my_screen_count = pd.concat(results)

[13]: my_screen_count

[13]: screen_on_count \
user
jd9INuQ5BBlW 2020-01-09 02:06:41.573999872+02:00 4

2020-01-09 02:26:41.573999872+02:00 2
2020-01-09 02:46:41.573999872+02:00 2
2020-01-09 03:06:41.573999872+02:00 0
2020-01-09 03:26:41.573999872+02:00 0

... ...
iGyXetHE3S8u 2019-09-08 19:22:41.009999872+03:00 0

2019-09-08 19:42:41.009999872+03:00 0
2019-09-08 20:02:41.009999872+03:00 0
2019-09-08 20:22:41.009999872+03:00 0
2019-09-08 20:42:41.009999872+03:00 0

screen_off_count \
user
jd9INuQ5BBlW 2020-01-09 02:06:41.573999872+02:00 3

2020-01-09 02:26:41.573999872+02:00 3
2020-01-09 02:46:41.573999872+02:00 2
2020-01-09 03:06:41.573999872+02:00 0
2020-01-09 03:26:41.573999872+02:00 0

... ...
iGyXetHE3S8u 2019-09-08 19:22:41.009999872+03:00 0

2019-09-08 19:42:41.009999872+03:00 0
2019-09-08 20:02:41.009999872+03:00 0
2019-09-08 20:22:41.009999872+03:00 0

(continues on next page)

18.4. 4. Extracting features 169

Niimpy Documentation, Release dev

(continued from previous page)

2019-09-08 20:42:41.009999872+03:00 0

screen_use_count
user
jd9INuQ5BBlW 2020-01-09 02:06:41.573999872+02:00 3

2020-01-09 02:26:41.573999872+02:00 1
2020-01-09 02:46:41.573999872+02:00 1
2020-01-09 03:06:41.573999872+02:00 0
2020-01-09 03:26:41.573999872+02:00 0

... ...
iGyXetHE3S8u 2019-09-08 19:22:41.009999872+03:00 0

2019-09-08 19:42:41.009999872+03:00 0
2019-09-08 20:02:41.009999872+03:00 0
2019-09-08 20:22:41.009999872+03:00 0
2019-09-08 20:42:41.009999872+03:00 1

[2533 rows x 3 columns]

The functions can also be called in absence of a feature_functions dictionary. In this case, the binning will be automat-
ically set to 30-minutes.

[14]: my_screen_count = s.screen_count(data, bat_data, {})
my_screen_count.head()

[14]: screen_on_count screen_off_count \
user
iGyXetHE3S8u 2019-08-05 14:00:00+03:00 4 4

2019-08-05 14:30:00+03:00 2 2
2019-08-05 15:00:00+03:00 0 0
2019-08-05 15:30:00+03:00 0 0
2019-08-05 16:00:00+03:00 0 0

screen_use_count
user
iGyXetHE3S8u 2019-08-05 14:00:00+03:00 4

2019-08-05 14:30:00+03:00 2
2019-08-05 15:00:00+03:00 0
2019-08-05 15:30:00+03:00 0
2019-08-05 16:00:00+03:00 0

In case we do not have battery data, the functions can also be called without it. In this case, simply input an empty
dataframe in the second position of the function. For example,

[15]: empty_bat = pd.DataFrame()
no_bat = s.screen_count(data, empty_bat, function_features) #no battery information
no_bat.head()

[15]: screen_on_count \
user
iGyXetHE3S8u 2019-08-05 14:02:41.009999872+03:00 3

2019-08-05 14:22:41.009999872+03:00 2
2019-08-05 14:42:41.009999872+03:00 1
2019-08-05 15:02:41.009999872+03:00 0

(continues on next page)

170 Chapter 18. Demo notebook for analyzing screen on/off data

Niimpy Documentation, Release dev

(continued from previous page)

2019-08-05 15:22:41.009999872+03:00 0

screen_off_count \
user
iGyXetHE3S8u 2019-08-05 14:02:41.009999872+03:00 3

2019-08-05 14:22:41.009999872+03:00 2
2019-08-05 14:42:41.009999872+03:00 1
2019-08-05 15:02:41.009999872+03:00 0
2019-08-05 15:22:41.009999872+03:00 0

screen_use_count
user
iGyXetHE3S8u 2019-08-05 14:02:41.009999872+03:00 3

2019-08-05 14:22:41.009999872+03:00 2
2019-08-05 14:42:41.009999872+03:00 1
2019-08-05 15:02:41.009999872+03:00 0
2019-08-05 15:22:41.009999872+03:00 0

4.2 Extract features using the wrapper

We can use niimpy’s ready-made wrapper to extract one or several features at the same time. The wrapper will require
two inputs: - (mandatory) dataframe that must comply with the minimum requirements (see ‘* TIP! Data requirements
above) - (optional) an argument dictionary for wrapper

18.4.3 4.2.1 The argument dictionary for wrapper (or how we specify the way the
wrapper works)

This argument dictionary will use dictionaries created for stand-alone functions. If you do not know how to create
those argument dictionaries, please read the section 4.1.1 The argument dictionary for stand-alone functions (or
how we specify the way a function works) first.

The wrapper dictionary is simple. Its keys are the names of the features we want to compute. Its values are argument
dictionaries created for each stand-alone function we will employ. Let’s see some examples of wrapper dictionaries:

[16]: wrapper_features1 = {s.screen_count:{"screen_column_name":"screen_status","resample_args
→˓":{"rule":"1D"}},

s.screen_duration_min:{"screen_column_name":"screen_status",
→˓"resample_args":{"rule":"1D"}}}

• wrapper_features1 will be used to analyze two features, screen_count and screen_duration_min. For
the feature screen_count, we will use the data stored in the column screen_status in our dataframe and the
data will be binned in one day periods. For the feature screen_duration_min, we will use the data stored in the
column screen_status in our dataframe and the data will be binned in one day periods.

[17]: wrapper_features2 = {s.screen_count:{"screen_column_name":"screen_status", "battery_
→˓column_name":"battery_status", "resample_args":{"rule":"1D"}},

s.screen_duration:{"screen_column_name":"random_name","resample_args
→˓":{"rule":"5H","offset":"5min"}}}

• wrapper_features2 will be used to analyze two features, screen_status and screen_duration. For the
feature screen_status, we will use the data stored in the column screen_status in our dataframe and the data

18.4. 4. Extracting features 171

Niimpy Documentation, Release dev

will be binned in one day periods. In addition, we will use battery data stored in a column called “battery_status”.
For the feature screen_duration, we will use the data stored in the column random_name in our dataframe and
the data will be binned in 5-hour periods with a 5-minute offset.

[18]: wrapper_features3 = {s.screen_count:{"screen_column_name":"one_name","resample_args":{
→˓"rule":"1D","offset":"5min"}},

s.screen_duration:{"screen_column_name":"one_name", "battery_column
→˓":"some_column","resample_args":{}},

s.screen_duration_min:{"screen_column_name":"another_name",
→˓"resample_args":{"rule":"30T","origin":"end_day"}}}

• wrapper_features3 will be used to analyze three features, screen_count, screen_duration, and
screen_duration_min. For the feature screen_count, we will use the data stored in the column one_name
and the data will be binned in one day periods with a 5-min offset. For the feature screen_duration, we will
use the data stored in the column one_name in our dataframe and the data will be binned using the default set-
tings, i.e. 30-min bins. In addition, we will use data from the battery sensor, which will be passed in a column
called “some_column”. Finally, for the feature screen_duration_min, we will use the data stored in the column
another_name in our dataframe and the data will be binned in 30-minute periods and the origin of the bins will
be the ceiling midnight of the last day.

Default values: if no arguments are passed, niimpy’s default values are “screen_status” for the screen_column_name,
and 30-min aggregation bins. Moreover, the wrapper will compute all the available functions in absence of the argument
dictionary.

18.4.4 4.2.2 Using the wrapper

Now that we understand how the wrapper is customized, it is time we compute our first communication feature using the
wrapper. Suppose that we are interested in extracting the call total duration every 50 minutes. We will need niimpy’s
extract_features_comms function, the data, and we will also need to create a dictionary to customize our function.
Let’s create the dictionary first

[19]: wrapper_features1 = {s.screen_duration:{"screen_column_name":"screen_status","resample_
→˓args":{"rule":"50T"}}}

Now, let’s use the wrapper

[20]: results_wrapper = s.extract_features_screen(data, bat_data, features=wrapper_features1)
results_wrapper.head(5)

computing <function screen_duration at 0x000001EDD30E8160>...

[20]: screen_on_durationtotal \
user
iGyXetHE3S8u 2019-08-05 13:20:00+03:00 78.193

2019-08-05 14:10:00+03:00 198.189
2019-08-05 15:00:00+03:00 0.000
2019-08-05 15:50:00+03:00 0.000
2019-08-05 16:40:00+03:00 0.000

screen_off_durationtotal \
user
iGyXetHE3S8u 2019-08-05 13:20:00+03:00 546.422

2019-08-05 14:10:00+03:00 286720.506
2019-08-05 15:00:00+03:00 0.000

(continues on next page)

172 Chapter 18. Demo notebook for analyzing screen on/off data

Niimpy Documentation, Release dev

(continued from previous page)

2019-08-05 15:50:00+03:00 0.000
2019-08-05 16:40:00+03:00 0.000

screen_use_durationtotal
user
iGyXetHE3S8u 2019-08-05 13:20:00+03:00 0.139

2019-08-05 14:10:00+03:00 1.050
2019-08-05 15:00:00+03:00 0.000
2019-08-05 15:50:00+03:00 0.000
2019-08-05 16:40:00+03:00 0.000

Our first attempt was succesful. Now, let’s try something more. Let’s assume we want to compute the screen_duration
and screen_count in 50-minutes bin.

[21]: wrapper_features2 = {s.screen_duration:{"screen_column_name":"screen_status","resample_
→˓args":{"rule":"50T"}},

s.screen_count:{"screen_column_name":"screen_status","resample_args
→˓":{"rule":"50T"}}}
results_wrapper = s.extract_features_screen(data, bat_data, features=wrapper_features2)
results_wrapper.head(5)

computing <function screen_duration at 0x000001EDD30E8160>...
computing <function screen_count at 0x000001EDD30E80D0>...

[21]: screen_on_durationtotal \
user
iGyXetHE3S8u 2019-08-05 13:20:00+03:00 78.193

2019-08-05 14:10:00+03:00 198.189
2019-08-05 15:00:00+03:00 0.000
2019-08-05 15:50:00+03:00 0.000
2019-08-05 16:40:00+03:00 0.000

screen_off_durationtotal \
user
iGyXetHE3S8u 2019-08-05 13:20:00+03:00 546.422

2019-08-05 14:10:00+03:00 286720.506
2019-08-05 15:00:00+03:00 0.000
2019-08-05 15:50:00+03:00 0.000
2019-08-05 16:40:00+03:00 0.000

screen_use_durationtotal \
user
iGyXetHE3S8u 2019-08-05 13:20:00+03:00 0.139

2019-08-05 14:10:00+03:00 1.050
2019-08-05 15:00:00+03:00 0.000
2019-08-05 15:50:00+03:00 0.000
2019-08-05 16:40:00+03:00 0.000

screen_on_count screen_off_count \
user
iGyXetHE3S8u 2019-08-05 13:20:00+03:00 1 1

2019-08-05 14:10:00+03:00 5 5
2019-08-05 15:00:00+03:00 0 0

(continues on next page)

18.4. 4. Extracting features 173

Niimpy Documentation, Release dev

(continued from previous page)

2019-08-05 15:50:00+03:00 0 0
2019-08-05 16:40:00+03:00 0 0

screen_use_count
user
iGyXetHE3S8u 2019-08-05 13:20:00+03:00 1

2019-08-05 14:10:00+03:00 5
2019-08-05 15:00:00+03:00 0
2019-08-05 15:50:00+03:00 0
2019-08-05 16:40:00+03:00 0

Great! Another successful attempt. We see from the results that more columns were added with the required cal-
culations. This is how the wrapper works when all features are computed with the same bins. Now, let’s see how
the wrapper performs when each function has different binning requirements. Let’s assume we need to compute the
screen_duration every day, and the screen_count every 5 hours with an offset of 5 minutes.

[22]: wrapper_features3 = {s.screen_duration:{"screen_column_name":"screen_status","resample_
→˓args":{"rule":"1D"}},

s.screen_count:{"screen_column_name":"screen_status","resample_args
→˓":{"rule":"5H","offset":"5min"}}}
results_wrapper = s.extract_features_screen(data, bat_data, features=wrapper_features3)
results_wrapper.head(5)

computing <function screen_duration at 0x000001EDD30E8160>...
computing <function screen_count at 0x000001EDD30E80D0>...

[22]: screen_on_durationtotal \
user
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 276.382

2019-08-06 00:00:00+03:00 0.000
2019-08-07 00:00:00+03:00 0.000
2019-08-08 00:00:00+03:00 98.228
2019-08-09 00:00:00+03:00 8.136

screen_off_durationtotal \
user
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 287266.927999

2019-08-06 00:00:00+03:00 0.000000
2019-08-07 00:00:00+03:00 0.000000
2019-08-08 00:00:00+03:00 34238.356000
2019-08-09 00:00:00+03:00 114869.103000

screen_use_durationtotal \
user
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 1.189

2019-08-06 00:00:00+03:00 0.000
2019-08-07 00:00:00+03:00 0.000
2019-08-08 00:00:00+03:00 2.866
2019-08-09 00:00:00+03:00 0.516

screen_on_count screen_off_count \
user
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN NaN

(continues on next page)

174 Chapter 18. Demo notebook for analyzing screen on/off data

Niimpy Documentation, Release dev

(continued from previous page)

2019-08-06 00:00:00+03:00 NaN NaN
2019-08-07 00:00:00+03:00 NaN NaN
2019-08-08 00:00:00+03:00 NaN NaN
2019-08-09 00:00:00+03:00 NaN NaN

screen_use_count
user
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN

2019-08-06 00:00:00+03:00 NaN
2019-08-07 00:00:00+03:00 NaN
2019-08-08 00:00:00+03:00 NaN
2019-08-09 00:00:00+03:00 NaN

[23]: results_wrapper.tail(5)

[23]: screen_on_durationtotal \
user
jd9INuQ5BBlW 2020-01-09 00:05:00+02:00 NaN

2020-01-09 05:05:00+02:00 NaN
2020-01-09 10:05:00+02:00 NaN
2020-01-09 15:05:00+02:00 NaN
2020-01-09 20:05:00+02:00 NaN

screen_off_durationtotal \
user
jd9INuQ5BBlW 2020-01-09 00:05:00+02:00 NaN

2020-01-09 05:05:00+02:00 NaN
2020-01-09 10:05:00+02:00 NaN
2020-01-09 15:05:00+02:00 NaN
2020-01-09 20:05:00+02:00 NaN

screen_use_durationtotal \
user
jd9INuQ5BBlW 2020-01-09 00:05:00+02:00 NaN

2020-01-09 05:05:00+02:00 NaN
2020-01-09 10:05:00+02:00 NaN
2020-01-09 15:05:00+02:00 NaN
2020-01-09 20:05:00+02:00 NaN

screen_on_count screen_off_count \
user
jd9INuQ5BBlW 2020-01-09 00:05:00+02:00 7.0 8.0

2020-01-09 05:05:00+02:00 0.0 0.0
2020-01-09 10:05:00+02:00 9.0 9.0
2020-01-09 15:05:00+02:00 17.0 17.0
2020-01-09 20:05:00+02:00 12.0 11.0

screen_use_count
user
jd9INuQ5BBlW 2020-01-09 00:05:00+02:00 5.0

2020-01-09 05:05:00+02:00 0.0
2020-01-09 10:05:00+02:00 3.0

(continues on next page)

18.4. 4. Extracting features 175

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 15:05:00+02:00 7.0
2020-01-09 20:05:00+02:00 3.0

The output is once again a dataframe. In this case, two aggregations are shown. The first one is the daily aggregation
computed for the screen_duration feature (head). The second one is the 5-hour aggregation period with 5-min offset
for the screen_count (tail). We must note that because the screen_countfeature is not required to be aggregated
daily, the daily aggregation timestamps have a NaN value. Similarly, because the screen_durationis not required to
be aggregated in 5-hour windows, its values are NaN for all subjects.

18.4.5 4.2.3 Wrapper and its default option

The default option will compute all features in 30-minute aggregation windows. To use the
extract_features_comms function with its default options, simply call the function.

[24]: default = s.extract_features_screen(data, bat_data)

computing <function screen_off at 0x000001EDD30E8040>...
computing <function screen_count at 0x000001EDD30E80D0>...
computing <function screen_duration at 0x000001EDD30E8160>...
computing <function screen_duration_min at 0x000001EDD30E81F0>...
computing <function screen_duration_max at 0x000001EDD30E8280>...
computing <function screen_duration_mean at 0x000001EDD30E8310>...
computing <function screen_duration_median at 0x000001EDD30E83A0>...
computing <function screen_duration_std at 0x000001EDD30E8430>...
computing <function screen_first_unlock at 0x000001EDD30E84C0>...

The function prints the computed features so you can track its process. Now let’s have a look at the outputs

[25]: default.tail(10)

[25]: screen_off screen_on_count \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN 0.0

2020-01-09 20:00:00+02:00 NaN 0.0
2020-01-09 20:30:00+02:00 NaN 1.0
2020-01-09 21:00:00+02:00 NaN 2.0
2020-01-09 21:30:00+02:00 NaN 4.0
2020-01-09 22:00:00+02:00 NaN 1.0
2020-01-09 22:30:00+02:00 NaN 0.0
2020-01-09 23:00:00+02:00 NaN 4.0

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN NaN

screen_off_count screen_use_count \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 0.0 0.0

2020-01-09 20:00:00+02:00 0.0 0.0
2020-01-09 20:30:00+02:00 1.0 1.0
2020-01-09 21:00:00+02:00 1.0 1.0
2020-01-09 21:30:00+02:00 5.0 1.0
2020-01-09 22:00:00+02:00 1.0 0.0
2020-01-09 22:30:00+02:00 0.0 0.0

(continues on next page)

176 Chapter 18. Demo notebook for analyzing screen on/off data

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 23:00:00+02:00 3.0 0.0
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN NaN

screen_on_durationtotal \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 0.000

2020-01-09 20:00:00+02:00 0.000
2020-01-09 20:30:00+02:00 8.253
2020-01-09 21:00:00+02:00 11.158
2020-01-09 21:30:00+02:00 376.930
2020-01-09 22:00:00+02:00 154.643
2020-01-09 22:30:00+02:00 0.000
2020-01-09 23:00:00+02:00 6.931

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_off_durationtotal \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 0.000000

2020-01-09 20:00:00+02:00 0.000000
2020-01-09 20:30:00+02:00 0.005000
2020-01-09 21:00:00+02:00 0.010000
2020-01-09 21:30:00+02:00 46.027999
2020-01-09 22:00:00+02:00 0.011000
2020-01-09 22:30:00+02:00 0.000000
2020-01-09 23:00:00+02:00 0.025000

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_use_durationtotal \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 0.000

2020-01-09 20:00:00+02:00 0.000
2020-01-09 20:30:00+02:00 28.930
2020-01-09 21:00:00+02:00 39.087
2020-01-09 21:30:00+02:00 101.062
2020-01-09 22:00:00+02:00 NaN
2020-01-09 22:30:00+02:00 NaN
2020-01-09 23:00:00+02:00 NaN

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_on_durationminimum \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 8.253
2020-01-09 21:00:00+02:00 5.234
2020-01-09 21:30:00+02:00 33.834
2020-01-09 22:00:00+02:00 154.643
2020-01-09 22:30:00+02:00 NaN

(continues on next page)

18.4. 4. Extracting features 177

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 23:00:00+02:00 2.079
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_off_durationminimum \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 0.005
2020-01-09 21:00:00+02:00 0.010
2020-01-09 21:30:00+02:00 0.006
2020-01-09 22:00:00+02:00 0.011
2020-01-09 22:30:00+02:00 NaN
2020-01-09 23:00:00+02:00 0.008

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_use_durationminimum ... \
user ...
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN ...

2020-01-09 20:00:00+02:00 NaN ...
2020-01-09 20:30:00+02:00 28.930 ...
2020-01-09 21:00:00+02:00 39.087 ...
2020-01-09 21:30:00+02:00 101.062 ...
2020-01-09 22:00:00+02:00 NaN ...
2020-01-09 22:30:00+02:00 NaN ...
2020-01-09 23:00:00+02:00 NaN ...

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN ...
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN ...

screen_on_durationmean \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 8.253000
2020-01-09 21:00:00+02:00 5.579000
2020-01-09 21:30:00+02:00 94.232500
2020-01-09 22:00:00+02:00 154.643000
2020-01-09 22:30:00+02:00 NaN
2020-01-09 23:00:00+02:00 2.310333

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_off_durationmean \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 0.005000
2020-01-09 21:00:00+02:00 0.010000
2020-01-09 21:30:00+02:00 9.205600
2020-01-09 22:00:00+02:00 0.011000
2020-01-09 22:30:00+02:00 NaN

(continues on next page)

178 Chapter 18. Demo notebook for analyzing screen on/off data

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 23:00:00+02:00 0.008333
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_use_durationmean \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 28.930
2020-01-09 21:00:00+02:00 39.087
2020-01-09 21:30:00+02:00 101.062
2020-01-09 22:00:00+02:00 NaN
2020-01-09 22:30:00+02:00 NaN
2020-01-09 23:00:00+02:00 NaN

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_on_durationmedian \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 8.2530
2020-01-09 21:00:00+02:00 5.5790
2020-01-09 21:30:00+02:00 73.2835
2020-01-09 22:00:00+02:00 154.6430
2020-01-09 22:30:00+02:00 NaN
2020-01-09 23:00:00+02:00 2.2620

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_off_durationmedian \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 0.005
2020-01-09 21:00:00+02:00 0.010
2020-01-09 21:30:00+02:00 0.012
2020-01-09 22:00:00+02:00 0.011
2020-01-09 22:30:00+02:00 NaN
2020-01-09 23:00:00+02:00 0.008

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_use_durationmedian \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 28.930
2020-01-09 21:00:00+02:00 39.087
2020-01-09 21:30:00+02:00 101.062
2020-01-09 22:00:00+02:00 NaN
2020-01-09 22:30:00+02:00 NaN

(continues on next page)

18.4. 4. Extracting features 179

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 23:00:00+02:00 NaN
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_on_durationstd \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 NaN
2020-01-09 21:00:00+02:00 0.487904
2020-01-09 21:30:00+02:00 71.990324
2020-01-09 22:00:00+02:00 NaN
2020-01-09 22:30:00+02:00 NaN
2020-01-09 23:00:00+02:00 0.258906

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_off_durationstd \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 NaN
2020-01-09 21:00:00+02:00 NaN
2020-01-09 21:30:00+02:00 20.561987
2020-01-09 22:00:00+02:00 NaN
2020-01-09 22:30:00+02:00 NaN
2020-01-09 23:00:00+02:00 0.000577

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

screen_use_durationstd \
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaN

2020-01-09 20:00:00+02:00 NaN
2020-01-09 20:30:00+02:00 NaN
2020-01-09 21:00:00+02:00 NaN
2020-01-09 21:30:00+02:00 NaN
2020-01-09 22:00:00+02:00 NaN
2020-01-09 22:30:00+02:00 NaN
2020-01-09 23:00:00+02:00 NaN

iGyXetHE3S8u 2019-08-05 00:00:00+03:00 NaN
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 NaN

datetime
user
jd9INuQ5BBlW 2020-01-09 19:30:00+02:00 NaT

2020-01-09 20:00:00+02:00 NaT
2020-01-09 20:30:00+02:00 NaT
2020-01-09 21:00:00+02:00 NaT
2020-01-09 21:30:00+02:00 NaT
2020-01-09 22:00:00+02:00 NaT
2020-01-09 22:30:00+02:00 NaT

(continues on next page)

180 Chapter 18. Demo notebook for analyzing screen on/off data

Niimpy Documentation, Release dev

(continued from previous page)

2020-01-09 23:00:00+02:00 NaT
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 2019-08-05 14:03:42.322000128+03:00
jd9INuQ5BBlW 2020-01-09 00:00:00+02:00 2020-01-09 02:16:19.010999808+02:00

[10 rows x 23 columns]

18.5 Implementing own features

If none of the provided functions suits well, We can implement our own customized features easily. To do so, we need
to define a function that accepts a dataframe and returns a dataframe. The returned object should be indexed by user
and timestamps (multiindex). To make the feature readily available in the default options, we need add the screen prefix
to the new function (e.g. screen_my-new-feature). Let’s assume we need a new function that detects the last time
the screen is unlocked. Let’s first define the function

[26]: def screen_last_unlock(df, bat, feature_functions=None):
if not "screen_column_name" in feature_functions:

col_name = "screen_status"
else:

col_name = feature_functions["screen_column_name"]
if not "resample_args" in feature_functions.keys():

feature_functions["resample_args"] = {"rule":"30T"}

df2 = s.util_screen(df, bat, feature_functions)
df2 = s.event_classification_screen(df2, feature_functions)

result = df2[df2.on==1].groupby("user").resample(rule='1D').max()
result = result[["datetime"]]

return result

Then, we can call our new function in the stand-alone way or using the extract_features_screen function. Because
the stand-alone way is the common way to call functions in python, we will not show it. Instead, we will show how to
integrate this new function to the wrapper. Let’s read again the data and assume we want the default behavior of the
wrapper.

[27]: customized_features = s.extract_features_screen(data, bat_data, features={screen_last_
→˓unlock: {}})

computing <function screen_last_unlock at 0x000001EDD3534F70>...

[28]: customized_features.head()

[28]: datetime
user
iGyXetHE3S8u 2019-08-05 00:00:00+03:00 2019-08-05 14:49:45.596999936+03:00

2019-08-06 00:00:00+03:00 NaT
2019-08-07 00:00:00+03:00 NaT
2019-08-08 00:00:00+03:00 2019-08-08 22:44:13.834000128+03:00
2019-08-09 00:00:00+03:00 2019-08-09 07:50:33.224000+03:00

18.5. Implementing own features 181

Niimpy Documentation, Release dev

[]:

182 Chapter 18. Demo notebook for analyzing screen on/off data

CHAPTER

NINETEEN

SURVEYS

Surveys consist of columns * id for the question identifier * answer for the answer of the question * q which is the
text of the question presented to the user (optional) * As usual, the DataFrame index is the timestamp of the answer.
It is the convention that all responses in a one single survey instance have the same timestamp, and this is used to link
surveys together.

The raw on-disk format is “long”, that is, one row per answer, which is “tidy data”. This provides the most flexible
format, but often you need to do other transformations.

19.1 Load data

[1]: # Artificial example survey data
import niimpy
from niimpy import config
import niimpy.preprocessing.survey as survey
from niimpy.preprocessing.survey import *
import warnings
warnings.filterwarnings("ignore")

[2]: df = niimpy.read_csv(config.SURVEY_PATH, tz='Europe/Helsinki')
df.head()

[2]: user age gender Little interest or pleasure in doing things. \
0 1 20 Male several-days
1 2 32 Male more-than-half-the-days
2 3 15 Male more-than-half-the-days
3 4 35 Female not-at-all
4 5 23 Male more-than-half-the-days

Feeling down; depressed or hopeless. Feeling nervous; anxious or on edge. \
0 more-than-half-the-days not-at-all
1 more-than-half-the-days not-at-all
2 not-at-all several-days
3 nearly-every-day not-at-all
4 not-at-all more-than-half-the-days

Not being able to stop or control worrying. \
0 nearly-every-day
1 several-days
2 not-at-all

(continues on next page)

183

Niimpy Documentation, Release dev

(continued from previous page)

3 several-days
4 several-days

In the last month; how often have you felt that you were unable to control the␣
→˓important things in your life? \
0 almost-never
1 never
2 never
3 very-often
4 almost-never

In the last month; how often have you felt confident about your ability to handle your␣
→˓personal problems? \
0 sometimes
1 never
2 very-often
3 fairly-often
4 very-often

In the last month; how often have you felt that things were going your way? \
0 fairly-often
1 very-often
2 very-often
3 very-often
4 almost-never

In the last month; how often have you been able to control irritations in your life? \
0 never
1 sometimes
2 fairly-often
3 never
4 sometimes

In the last month; how often have you felt that you were on top of things? \
0 sometimes
1 never
2 never
3 sometimes
4 sometimes

In the last month; how often have you been angered because of things that were outside␣
→˓of your control? \
0 very-often
1 fairly-often
2 never
3 never
4 very-often

In the last month; how often have you felt difficulties were piling up so high that␣
→˓you could not overcome them?
0 fairly-often
1 never

(continues on next page)

184 Chapter 19. Surveys

Niimpy Documentation, Release dev

(continued from previous page)

2 almost-never
3 fairly-often
4 never

19.2 Preprocessing

The dataframe’s columns are raw questions from a survey. Some questions belong to a specific category, so we will
annotate them with ids. The id is constructed from a prefix (the questionnaire category: GAD, PHQ, PSQI etc.),
followed by the question number (1,2,3). Similarly, we will also the answers to meaningful numerical values.

Note: It’s important that the dataframe follows the below schema before passing into niimpy.

[3]: # Convert column name to id, based on provided mappers from niimpy
col_id = {**PHQ2_MAP, **PSQI_MAP, **PSS10_MAP, **PANAS_MAP, **GAD2_MAP}
selected_cols = [col for col in df.columns if col in col_id.keys()]

Convert from wide to long format
transformed_df = pd.melt(df, id_vars=['user', 'age', 'gender'], value_vars=selected_cols,
→˓ var_name='question', value_name='raw_answer')

Assign questions to codes
transformed_df['id'] = transformed_df['question'].replace(col_id)
transformed_df.head()

[3]: user age gender question \
0 1 20 Male Little interest or pleasure in doing things.
1 2 32 Male Little interest or pleasure in doing things.
2 3 15 Male Little interest or pleasure in doing things.
3 4 35 Female Little interest or pleasure in doing things.
4 5 23 Male Little interest or pleasure in doing things.

raw_answer id
0 several-days PHQ2_1
1 more-than-half-the-days PHQ2_1
2 more-than-half-the-days PHQ2_1
3 not-at-all PHQ2_1
4 more-than-half-the-days PHQ2_1

Moreover, niimpy can convert the raw answers to numerical values for further analysis. For this, we need a mapping
{raw_answer: numerical_answer}, which niimpy provides within the survey module that you can easily adjust
to your own needs.

Based on the question’s id, niimpy maps the raw answers to their numerical presentation.

[4]: # Transform raw answers to numerical values
transformed_df['answer'] = survey.survey_convert_to_numerical_answer(transformed_df,␣
→˓answer_col = 'raw_answer',

question_id = 'id',␣
→˓id_map=ID_MAP_PREFIX, use_prefix=True)
transformed_df.head()

19.2. Preprocessing 185

Niimpy Documentation, Release dev

[4]: user age gender question \
0 1 20 Male Little interest or pleasure in doing things.
1 2 32 Male Little interest or pleasure in doing things.
2 3 15 Male Little interest or pleasure in doing things.
3 4 35 Female Little interest or pleasure in doing things.
4 5 23 Male Little interest or pleasure in doing things.

raw_answer id answer
0 several-days PHQ2_1 1
1 more-than-half-the-days PHQ2_1 2
2 more-than-half-the-days PHQ2_1 2
3 not-at-all PHQ2_1 0
4 more-than-half-the-days PHQ2_1 2

19.3 Print survey statistics

Now that we have finally preprocessed the survey, we can extract some meaningful statistic from it.

First, we can compute the mean, standard deviation, min, and max values of all questionnaires.

[5]: d = survey.survey_print_statistic(transformed_df, question_id_col = 'id', answer_col =
→˓'answer')
pd.DataFrame(d)

[5]: PHQ2 PSS10 GAD2
min 0.0000 4.000000 0.000000
max 6.0000 27.000000 6.000000
avg 3.0520 14.006000 3.042000
std 1.5855 3.687759 1.536423

You can specify the questionnaire that you want statistics of by passing a value into the prefix parameter.

[6]: d = survey.survey_print_statistic(transformed_df, question_id_col = 'id', answer_col =
→˓'answer', prefix='PHQ')
pd.DataFrame(d)

[6]: PHQ
avg 3.0520
max 6.0000
min 0.0000
std 1.5855

186 Chapter 19. Surveys

CHAPTER

TWENTY

DEMO NOTEBOOK: ANALYSING TRACKER DATA

20.1 Introduction

Fitness tracker is a rich source of longitudinal data captured at high frequency. Those can include step counts, heart
rate, calories expenditure, or sleep time. This notebook explains how we can use niimpy to extract some basic statistic
and features from step count data.

20.2 Read data

[1]: import niimpy
import pandas as pd
import niimpy.preprocessing.tracker as tracker
from niimpy import config
import warnings
warnings.filterwarnings("ignore")

[2]: data = pd.read_csv(config.STEP_SUMMARY_PATH, index_col=0)
Converting the index as date
data.index = pd.to_datetime(data.index)
data.shape

[2]: (73, 4)

[3]: data.head()

[3]: user date time steps
2021-07-01 00:00:00 wiam9xme 2021-07-01 00:00:00.000 0
2021-07-01 01:00:00 wiam9xme 2021-07-01 01:00:00.000 0
2021-07-01 02:00:00 wiam9xme 2021-07-01 02:00:00.000 0
2021-07-01 03:00:00 wiam9xme 2021-07-01 03:00:00.000 0
2021-07-01 04:00:00 wiam9xme 2021-07-01 04:00:00.000 0

187

Niimpy Documentation, Release dev

20.3 Getting basic statistics

Using niimpy we can extract a user’s step count statistic within a time window. The statistics include:

• mean: average number of steps taken within the time range

• standard deviation: standard deviation of steps

• max: max steps taken within a day during the time range

• min: min steps taken within a day during the time range

[4]: tracker.step_summary(data, value_col='steps')

[4]: user median_sum_step avg_sum_step std_sum_step min_sum_step \
0 wiam9xme 6480.0 8437.383562 3352.347745 5616

max_sum_step
0 13025

20.4 Feature extraction

Assuming that the step count comes in at hourly resolution, we can compute the distribution of daily step count at each
hour. The daily distribution is helpful to look at if for example, we want to see at what hours a user is most active at.

[5]: f = tracker.tracker_daily_step_distribution
step_distribution = tracker.extract_features_tracker(data, features={f: {}})
step_distribution

{<function tracker_daily_step_distribution at 0x00000190D69F45E0>: {}}

[5]: date time steps daily_sum hour month day \
user
wiam9xme 2021-07-01 2021-07-01 00:00:00 0 5616 0 7 1
wiam9xme 2021-07-01 2021-07-01 01:00:00 0 5616 1 7 1
wiam9xme 2021-07-01 2021-07-01 02:00:00 0 5616 2 7 1
wiam9xme 2021-07-01 2021-07-01 03:00:00 0 5616 3 7 1
wiam9xme 2021-07-01 2021-07-01 04:00:00 0 5616 4 7 1
...
wiam9xme 2021-07-03 2021-07-03 19:00:00 302 12002 19 7 3
wiam9xme 2021-07-03 2021-07-03 20:00:00 12 12002 20 7 3
wiam9xme 2021-07-03 2021-07-03 21:00:00 354 12002 21 7 3
wiam9xme 2021-07-03 2021-07-03 22:00:00 0 12002 22 7 3
wiam9xme 2021-07-03 2021-07-03 23:00:00 0 12002 23 7 3

daily_distribution
user
wiam9xme 0.000000
wiam9xme 0.000000
wiam9xme 0.000000
wiam9xme 0.000000
wiam9xme 0.000000
... ...
wiam9xme 0.025162

(continues on next page)

188 Chapter 20. Demo notebook: Analysing tracker data

Niimpy Documentation, Release dev

(continued from previous page)

wiam9xme 0.001000
wiam9xme 0.029495
wiam9xme 0.000000
wiam9xme 0.000000

[72 rows x 8 columns]

[]:

20.4. Feature extraction 189

Niimpy Documentation, Release dev

190 Chapter 20. Demo notebook: Analysing tracker data

CHAPTER

TWENTYONE

DEMO NOTEBOOK ON READING AND EXPLORING THE
STUDENTLIFE DATASET

In this example we download, preprocess and explore the StudentLife Dataset[1].

1.: Wang, Rui, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari, Stefanie Tignor, Xia Zhou, Dror Ben-Zeev,
and Andrew T. Campbell. “StudentLife: Assessing Mental Health, Academic Performance and Behavioral Trends of
College Students using Smartphones.” In Proceedings of the ACM Conference on Ubiquitous Computing. 2014.

[1]: import plotly.express as px
import plotly.io as pio
import warnings
from math import nan, inf
import pandas as pd
import niimpy
from niimpy.exploration.eda import countplot
from niimpy.preprocessing import survey
from niimpy.exploration.eda import categorical
from kaggle.api.kaggle_api_extended import KaggleApi
import zipfile

Plotly settings. Feel free to adjust to your needs.
pio.renderers.default = "png"
pio.templates.default = "seaborn"
px.defaults.template = "ggplot2"
px.defaults.color_continuous_scale = px.colors.sequential.RdBu
px.defaults.width = 1200
px.defaults.height = 482
warnings.filterwarnings("ignore")

api = KaggleApi()
api.authenticate()

api.dataset_download_files('dartweichen/student-life', path=".")
archive = zipfile.ZipFile('student-life.zip', 'r')

[2]: survey_file = archive.open(f"dataset/survey/PHQ-9.csv")
survey_data = pd.read_csv(survey_file)
survey_data = survey_data.rename(columns={'uid': 'user'})

[3]: PHQ9_MAP = {
'Little interest or pleasure in doing things': "PHQ9_1",

(continues on next page)

191

https://studentlife.cs.dartmouth.edu/dataset.html

Niimpy Documentation, Release dev

(continued from previous page)

'Feeling down, depressed, hopeless.': "PHQ9_2",
'Trouble falling or staying asleep, or sleeping too much.': "PHQ9_3",
'Feeling tired or having little energy': "PHQ9_4",
'Poor appetite or overeating': "PHQ9_5",
'Feeling bad about yourself or that you are a failure or have let yourself or your␣

→˓family down': "PHQ9_6",
'Trouble concentrating on things, such as reading the newspaper or watching␣

→˓television': "PHQ9_7",
'Moving or speaking so slowly that other people could have noticed. Or the opposite␣

→˓being so figety or restless that you have been moving around a lot more than usual':
→˓"PHQ9_8",
'Thoughts that you would be better off dead, or of hurting yourself': "PHQ9_9",

}
PHQ9_ANSWER_MAP = {

"Not at all": 0,
"Several days": 1,
"More than half the days": 2,
"Nearly every day": 3

}
selected_cols = [col for col in survey_data.columns if col in PHQ9_MAP.keys()]
transformed_df = pd.melt(survey_data, id_vars=['user', 'type'], value_vars=selected_cols,
→˓ var_name='question', value_name='raw_answer')
transformed_df['id'] = transformed_df['question'].replace(PHQ9_MAP)
transformed_df['answer'] = survey.survey_convert_to_numerical_answer(

transformed_df, answer_col = 'raw_answer', question_id = 'id',
id_map={"PHQ9": PHQ9_ANSWER_MAP}, use_prefix=True

)
transformed_df = transformed_df.set_index("user")

[4]: fig = categorical.questionnaire_grouped_summary(
transformed_df,
question='PHQ9_1',
group='type',
title='PHQ9 question: Little interest or pleasure in doing things',
xlabel='score',
ylabel='count',
width=800,
height=400

)
fig.show()

192 Chapter 21. Demo Notebook on Reading and Exploring the Studentlife Dataset

Niimpy Documentation, Release dev

[5]: pre_study_survey = transformed_df[transformed_df["type"] == "pre"]
scores = survey.survey_sum_scores(pre_study_survey, "PHQ9")

[6]: def PHQ9_sum_to_group(sum):
if sum < 5:

return "minimal"
elif sum < 10:

return "mild"
elif sum < 15:

return "moderate"
elif sum < 20:

return "moderately severe"
else:

return "severe"

scores = scores.reset_index()
scores["group"] = scores["score"].apply(PHQ9_sum_to_group)

[7]: activity_data = []
for user_number in range(60):

user = f"u{user_number:02}"
try:

csvfile = archive.open(f"dataset/sensing/activity/activity_{user}.csv")
user_activity = pd.read_csv(csvfile)
user_activity["user"] = user
activity_data.append(user_activity)

except:
pass

activity_data = pd.concat(activity_data)

Reduce activity data to whether the user was active or not. Values 1 and 2 represent␣
(continues on next page)

193

Niimpy Documentation, Release dev

(continued from previous page)

→˓activity.
activity_data = activity_data[activity_data[" activity inference"] != 3]
activity_data["activity"] = activity_data[" activity inference"].isin([1,2]).astype(int)

activity_data.set_index('timestamp',inplace=True)
activity_data.index = pd.to_datetime(activity_data.index, unit='s')

activity_data = niimpy.util.aggregate(activity_data, "1H")
activity_data = activity_data.reset_index("user")
activity_data = activity_data.replace([inf, -inf], nan).dropna(axis=0)
activity_data["activity"] = (activity_data["activity"]*5+0.5).round(0).astype(int)

[8]: activity_data = activity_data.reset_index().merge(
scores[["user", "group"]],
how="inner",
on="user",

).set_index("timestamp")

[9]: fig = countplot.countplot(activity_data,
fig_title='Activity data count for each user',
plot_type='count',
points='outliers',
aggregation='user',
user=None,
column='activity',
binning=False)

fig.show()

[10]: fig = countplot.countplot(activity_data,
fig_title='Group level activity score distributions',
plot_type='value',
points='outliers',
aggregation='group',

(continues on next page)

194 Chapter 21. Demo Notebook on Reading and Exploring the Studentlife Dataset

Niimpy Documentation, Release dev

(continued from previous page)

user=None,
column='activity',
binning=False)

fig.show()

195

Niimpy Documentation, Release dev

196 Chapter 21. Demo Notebook on Reading and Exploring the Studentlife Dataset

CHAPTER

TWENTYTWO

ADDING FEATURES

22.1 General principles

niimpy is an open source project and general open source contribution guidelines apply - there is no need for us to
repeat them right now. Please use Github for communication.

Contributions are welcome and encouraged. * You don’t need to be perfect. Suggest what you can and we will help it
improve.

22.2 Adding an analysis

• Please add documentatation to a sensor page when you add a new analysis. This should include enough descrip-
tion so that someone else can understand and reproduce all relevant features - enough to describe the method for
a scientific article.

• Please add unit tests which test each relevant feature (and each claimed method feature) with a minimal example.
Each function can have multiple tests. For examples of unit tests, see below or niimpy/test_screen.py. You
can create some sample data within each test module which can be used both during development and for tests.

22.3 Common things to note

• You should always use the DataFrame index to retrieve data/time values, not the datetime column (which is a
convenience thing but not guaranteed to be there).

• Don’t require datetime in your input

• Have any times returned in the index (unless each row needs multiple times, then do what you need)

• Don’t fail if there are extra columns passed (or missing some non-essential columns). Look at what columns/data
is passed and and use that, but don’t do anything unexpected if someone makes a mistake with input data

• Group by ‘user’ and ‘device’ columns if they are present in the input

• Use niimpy.util._read_sqlite_auto function for getting data from input

• Use niimpy.filter.filter_dataframe to do basic initial filterings based on standard arguments.

• The Zen of Python is always good advice

197

https://www.python.org/dev/peps/pep-0020/

Niimpy Documentation, Release dev

22.4 Improving old functions

• Add tests for existing functionality

• For every functionality it claims, there should be a minimal test for it.

• Use read._get_dataframe and filter.filter_dataframe to handle standard arguments

• Don’t fail if unnecessary columns are not there (don’t drop unneeded columns, select only the needed ones).

• Make sure it uses the index, not the datetime column. Some older functions mays still expect it so we have a
difficult challenge.

• Improve the docstring of the function: we use the numpydoc format

• Add a documentation page for these sensors, document each function and include an example.

• Document what parameters it groups by when analyzing

• For example an ideal case is that any ‘user’ and ‘device’ columns are grouped by in the final output.

• When there are things that don’t work yet, you can put a TODO in the docstring to indicate that someone should
come back to it later.

22.5 Example unit test

You can read about testing in general in the CodeRefinery testing lesson.

First you would define some sample data. You could reuse existing data (or data from niimpy.sampledata), but if
data is reused too much then it becomes hard to improve test B because it will affect the data of test A. (do share data
when possible but split it when it’s relevant).

@pytest.fixture
def screen1():

return niimpy.read_csv(io.StringIO("""\
time,screen_status
0,1
60,0
"""))

Then you can make a test function:

def test_screen_off(screen1):
off = niimpy.preprocess.screen_off(screen1)
assert pd.Timestamp(60, unit='s', tz=TZ) in off.index

assert statemnts run the tested functions - when there are errors pytestwill provide much more useful error messages
than you might expect. You can have multiple asserts within a function, to test multiple things.

You run tests with pytest niimpy/ or pytest niimpy/test_screen.py. You can limit to certain tests with -k
and engage a debugger on errors with --pdb.

198 Chapter 22. Adding features

https://numpydoc.readthedocs.io/en/latest/format.html
https://coderefinery.github.io/testing/

Niimpy Documentation, Release dev

22.6 Documentation notes

• You can use Jupyter or ReST. ReST is better for narritive documentation.

[]:

22.6. Documentation notes 199

Niimpy Documentation, Release dev

200 Chapter 22. Adding features

CHAPTER

TWENTYTHREE

ABOUT DATA SOURCES

This section contains documentation about the contents of various data sources. This is not strictly a task of niimpy:
niimpy analyzes any data streams, and you should find the best documentation of the input data from wherever you get
that data, and then combine that source knowledge with niimpy analysis documentation to do what you need.

But still, the niimpy developers have their own data sources, and it is useful to include all this information in one place
(when we don’t have a better place to put it). Other third-party data sources could also be documented here if it proves
useful to someone.

201

Niimpy Documentation, Release dev

202 Chapter 23. About data sources

CHAPTER

TWENTYFOUR

AWARE

You can read upstream information about Aware sensors from http://www.awareframework.com/sensors/ . This page
elaborates the material found there, in particular how the koota-server project processes the data. Still, most of this
information could be a useful hints to others using the Aware data.

You can find our previous information on the koota-server wiki, but this information is now being moved here.

Section names in general correspond to the koota-server converter name.

24.1 Standard columns

Some columns that are stored in all the tables.

• time: unixtime, time of observation.

• datetime: time when the data instance was collected.

• user: a unique key to identify a user.

• device: a unique key to identify a mobile device.

24.2 AwareAccelerometer

accelerometer data is collected using the phones’ accelerometer sensors. The data is used to measure the acceleration
of the the phone in any direction of the 3D environment. The coordinate-system is defined relative to the screen of
the phone in its default orientation (facing the user). The axis are not swapped when the device’s screen orientation
changes. The X axis is horizontal and points to the right, the Y axis is vertical and points up and the Z axis points
towards the outside of the front face of the screen. In this system, coordinates behind the screen have negative Z
axis. The accelerometer sensor measures acceleration and inclues the acceleration due to the force of gravity into
consideration. So, if the phone is idle, the accelerometer reads the acceleration of gravity 9.81m/s and if the phone is
in free-fall towards the ground, the accelerometer reads 0m/s. The frequency of the data collected can vary largely. It
can be in the range of 0 to hundreds of data instances per hour.

• double_values_0: acceleration values of X axis.

• double_values_1: acceleration values of Y axis.

• double_values_2: acceleration values of Z axis.

203

http://www.awareframework.com/sensors/
https://github.com/digitraceslab/koota-server/
https://github.com/digitraceslab/koota-server/wiki/Aware#data-notes

Niimpy Documentation, Release dev

24.3 AwareApplicationCrashes

contains information about crashed applications. This data is logged whenever any application crashes, which can
occur from zero to several times per hour.

• application_name: application’s localized name.

• package_name: application’s package name.

• error_short: short description of the error.

• error_long: more verbose version of the error description.

• application_version: version code of the crashed application.

• error_condition: type of error has occurred to the application. 1=code error, 2=Application Not Responding
(ANR) error

24.4 AwareApplicationNotifications

contains the log of notifications the device has received. This data is logged whenever the phone receives a notification
so the frequency of this data can range from zero to hundreds per hour. of times per hour.

• application_name: application’s localized name.

• package_name: application’s package name.

• sound: notification’s sound source.

• vibrate: notification’s vibration patterns.

• defaults: 0=default color, -1=default all, 1=default sound, 2=default vibrate, 3=?, 4=default lights, 6=?, 7=?

24.5 AwareBattery

provides information about the battery and monitors power related events such as phone shutting down or rebooting or
charging. The frequency of data sent by battery sensor can be from 0 to tens of times per hour.

• battery_level: marks the current percentage of battery charge remaining.

• battery_status: 1=unknown, 2=charging, 3=discharging, 4=not charging, 5=full, -1=shut down, -3=reboot.

• battery_health: 1=unknown, 2=good, 3=overheat, 4=dead, 5=over voltage, 6=unspecified failure, 7=un-
known, 9=?.

• batery_adaptor: 0=?, 1=AC, 2=USB, 4=wireless adaptor.

204 Chapter 24. Aware

Niimpy Documentation, Release dev

24.6 AwareCalls

logs incoming and outgoing call details. The frequency of AwareMessages data depends upon number of calls the users
get so it can be from 0 to tens of times per hour.

• call_type: ‘incoming’, ‘outgoing’, ‘missed’.

• call_duration: call duration in seconds.

• trace: SHA-1 one-way source/target of the call.

24.7 AwareESM

This table provides information about the ESM sensor which adds support for user-provided context by leveraging
mobile Experience Sampling Method (ESM). The ESM questionnaires can be triggered by context, time or on-demand,
locally or remotely (within your study on AWARE’s dashboard). Although user-subjective, this sensor allows crowd
sourcing information that is challenging to instrument with sensors. Depending upon the number of time the users
attempt to answer the questions, the frequency can vary from 0 to tens of times per hour.

• time_asked: unixtime of the moment the question was asked.

• id: the id of the question asked.

• answer: the answer to the question asked.

• type: 1=text, 2=radio buttons, 3=checkbox, 4=likert scale, 5=quich answer, 6=scale, 9=numeric, 10=web.

• title: title of the ESM.

• instructions: instructions to answer the ESM.

• submit: status of the submission.

• notification_timeout: time after which the ESM notification is dismissed and the whole ESM queue

expires (in case expiration threshold is set to 0).

24.8 AwareLocationDayOld

This table ptakes one-day chunks of data and does some processing, for cases where we can’t give raw location data.
A day goes from 04:00 one day to 04:00 the next day. Since the information is reliant upon location services being
enabled, the frequency can range from zero to several thousands per hour. * day: day which is being analyzed, format
YYYY-MM-DD. * totdist: total distance traveled during the day, meters. * locstd: radius of gyration (standard
deviation of location throughout the day), meters. * n_bins: number of 10-minute intervals with data, including things.
* n_bins_nonnan: number of these 10-minute intervals with data. * transtime: does not work (was supposed to be
amount of time you are moving between clusters). * numclust: does not work (number of clusters determined with a
k-means algorithm, in other words the number of locations they visited. Number of clusters increased until maximum
radius is 500m. But maximum number of clusters is 20. This measure may not be accurate). * entropy: does not
work (was supposed to be p*log(p) of all the cluster memberships. * normentropy: does not work.

24.6. AwareCalls 205

Niimpy Documentation, Release dev

24.9 AwareLocationDay

This table ptakes one-day chunks of data and does some processing, for cases where we can’t give raw location data.
A day goes from 04:00 one day to 04:00 the next day. Since the information is reliant upon location services being
enabled, the frequency can range from zero to several thousands per hour. * day: day which is being analyzed, format
YYYY-MM-DD. * n_points: the number of raw datapoints. * n_bins_nonnan: number of these 10-minute intervals
with data. * n_bins_paired: the number of bins that also have data right after them. * ts_min: first timestamp of
any data point of the day (unixtime seconds) * ts_max: last timestamp of any data point of the day (unixtime seconds)”
(subtracting these two gives the range of data covered which can be contrasted with the next item) * ts_std: standard
deviation of all timestamps (seconds)”. Note that standard deviations of timestamps doesn’t actually make that much
sense, but combined with the range of timestamps can give you an idea of how spread out through the day the data
points are. * totdist: total distance covered throughout the day, looking at only the binned averages. If there are large
gaps in data, pretend those gaps don’t exist and find the distances anyway (meters). * totdist_raw: total distance
considering every data point (not binned). Probably larger than totdist, more affected by random fluctuations (meters).
* locstd: Radius of gyration of locations, after the binning (meters). * radius_mean: this isn’t exactly a radius, but
the longest distance between any point an the mean location (both mean location and other points after binning). This
measure may not make the most sense, but can be compared to locstd. * diameter: Not implemented, always nan. *
n_bins_moving: number of bins which are considered to be moving. Each bin is compared to the one after to deter-
mine an average speed, and n_bins_moving is the number of bins above some threshold. * n_bins_moving_speed:
number of bins which are moving, using the self-reported speed from Aware. Probably more accurate than the previous.
* n_points_moving_speed: number of data points (non-binned) which are have a speed above the speed threshold.

24.10 AwareLocationSafe

This table provides information about the users’ current location. Since the information is reliant upon location services
being enabled, the frequency can range from zero to several thousands per hour.

• accuracy: approximate accuracy of the location in meters.

• double_speed: users’ speed in meters/second over the ground.

• double_bearing: location’s bearing, in degrees.

• provider: describes whether the location information was provided by network or GPS.

• label: provides information whether location services was enabled or disabled.

24.11 AwareMessagess

logs incoming and outgoing message details. The frequency of AwareMessages data depends upon number of messages
the users get so it can be from 0 to tens of times per hour.

• message_type: ‘incoming’, ‘outgoing’.

• trace: SHA-1 one-way source/target of the call.

206 Chapter 24. Aware

Niimpy Documentation, Release dev

24.12 AwareScreen

This table provides information about the screen status. The number of times this data is collected can range from zero
to several hundreds per hour.

• screen_status: 0=off, 1=on, 2=locked, 3=unlocked.

24.13 AwareTimestamps

This table lists all the timestamps collected from every data packet that was sent. The frequency of data, since logged
for every data packet sent, can range from 0 to tens of thousands per hour.

• packet_time: the unixtime of the moment each packet was sent.

• table: provides information about which table did the data packet belong to. In other words it describes the
kind of data that was being transferred in the packet.

24.12. AwareScreen 207

Niimpy Documentation, Release dev

208 Chapter 24. Aware

CHAPTER

TWENTYFIVE

SURVEY

Provides details about the active data collected from the participants in the form of questionnaires. The survey tables
are given below.

25.1 MMMBackgroundAnswers, MMMBaselineAnswers, MMMDi-
agnosticPatientAnswers, MMMFeedbackPostActiveAnswers,
MMMPostActiveAnswers, MMMSurveyAllAnswers

These 6 tables provide details about questions and answers that were asked to the participants of this study. The answers
in each of these 6 tables were collected only once per user.

• id: uniquely identifies which question was asked to the participant.

• access_time: unixtime of the moment when the participant started answering the questions.

• question: describes the question that was asked.

• answer: provides the participants’ answer to the questions. The answers can be of several types.

They can be numbers, small texts or identifier representing a choice for multiple choice questions. * order: provides
an integer value which represents the number of questions asked before that particular question giving the order of the
entire questionnaire. * choice_text: represents the texts in the choices of the multiple choice questions which the
users selected as answers.

MMMBackgroundMeta, MMMBaselineMeta, MMMDiagnosticPatientMeta, MMMFeedbackPostActiveMeta,
MMMPostActiveMeta, MMMSurveyAllMeta ——————————————————————————————————

These 6 tables provide meta data for their respective set of questionnaires’ answers. Each of these tables summerize
the overall information gathered per user for that particular set of questionnaire. All of the data in these 6 tables were
collected only once.

• name: the name of the survey.

• access_time: unixtime of the moment when the participant started answering the questions.

• seconds: describes the time (in seconds) it took for the user to provide the answers.

• n_questions: number of questions to be answered in the survey.

209

Niimpy Documentation, Release dev

210 Chapter 25. Survey

CHAPTER

TWENTYSIX

INDICES AND TABLES

• genindex

• modindex

• search

211

Niimpy Documentation, Release dev

212 Chapter 26. Indices and tables

PYTHON MODULE INDEX

n
niimpy, 66
niimpy.analysis, 23
niimpy.exploration, 36
niimpy.exploration.eda, 34
niimpy.exploration.eda.categorical, 23
niimpy.exploration.eda.countplot, 26
niimpy.exploration.eda.lineplot, 28
niimpy.exploration.eda.missingness, 30
niimpy.exploration.eda.punchcard, 32
niimpy.exploration.missingness, 34
niimpy.exploration.setup_dataframe, 35
niimpy.preprocessing, 62
niimpy.preprocessing.application, 36
niimpy.preprocessing.audio, 38
niimpy.preprocessing.battery, 43
niimpy.preprocessing.communication, 46
niimpy.preprocessing.filter, 49
niimpy.preprocessing.location, 49
niimpy.preprocessing.sampledata, 53
niimpy.preprocessing.screen, 53
niimpy.preprocessing.survey, 58
niimpy.preprocessing.tracker, 59
niimpy.preprocessing.util, 60
niimpy.reading, 66
niimpy.reading.database, 62
niimpy.reading.read, 65

213

Niimpy Documentation, Release dev

214 Python Module Index

INDEX

A
aggregate() (in module niimpy.preprocessing.util), 60
ALL (class in niimpy.reading.database), 62
app_count() (in module ni-

impy.preprocessing.application), 36
app_duration() (in module ni-

impy.preprocessing.application), 36
audio_count_loud() (in module ni-

impy.preprocessing.audio), 38
audio_count_silent() (in module ni-

impy.preprocessing.audio), 38
audio_count_speech() (in module ni-

impy.preprocessing.audio), 38
audio_max_db() (in module ni-

impy.preprocessing.audio), 39
audio_max_freq() (in module ni-

impy.preprocessing.audio), 39
audio_mean_db() (in module ni-

impy.preprocessing.audio), 39
audio_mean_freq() (in module ni-

impy.preprocessing.audio), 40
audio_median_db() (in module ni-

impy.preprocessing.audio), 40
audio_median_freq() (in module ni-

impy.preprocessing.audio), 40
audio_min_db() (in module ni-

impy.preprocessing.audio), 41
audio_min_freq() (in module ni-

impy.preprocessing.audio), 41
audio_std_db() (in module ni-

impy.preprocessing.audio), 41
audio_std_freq() (in module ni-

impy.preprocessing.audio), 42

B
bar() (in module niimpy.exploration.eda.missingness),

30
bar_count() (in module ni-

impy.exploration.eda.missingness), 31
barplot_() (in module ni-

impy.exploration.eda.countplot), 26

battery_charge_discharge() (in module ni-
impy.preprocessing.battery), 43

battery_discharge() (in module ni-
impy.preprocessing.battery), 43

battery_gaps() (in module ni-
impy.preprocessing.battery), 43

battery_mean_level() (in module ni-
impy.preprocessing.battery), 43

battery_median_level() (in module ni-
impy.preprocessing.battery), 44

battery_occurrences() (in module ni-
impy.preprocessing.battery), 44

battery_shutdown_time() (in module ni-
impy.preprocessing.battery), 44

battery_std_level() (in module ni-
impy.preprocessing.battery), 44

boxplot_() (in module ni-
impy.exploration.eda.countplot), 27

C
calculate_averages_() (in module ni-

impy.exploration.eda.lineplot), 28
calculate_bins() (in module ni-

impy.exploration.eda.countplot), 27
call_count() (in module ni-

impy.preprocessing.communication), 46
call_duration_mean() (in module ni-

impy.preprocessing.communication), 46
call_duration_median() (in module ni-

impy.preprocessing.communication), 46
call_duration_std() (in module ni-

impy.preprocessing.communication), 47
call_duration_total() (in module ni-

impy.preprocessing.communication), 47
call_outgoing_incoming_ratio() (in module ni-

impy.preprocessing.communication), 47
categorize_answers() (in module ni-

impy.exploration.eda.categorical), 23
classify_app() (in module ni-

impy.preprocessing.application), 37
cluster_locations() (in module ni-

impy.preprocessing.location), 49

215

Niimpy Documentation, Release dev

combine_dataframe_() (in module ni-
impy.exploration.eda.punchcard), 32

compute_nbin_maxdist_home() (in module ni-
impy.preprocessing.location), 49

count() (niimpy.reading.database.Data1 method), 63
countplot() (in module ni-

impy.exploration.eda.countplot), 27
create_categorical_dataframe() (in module ni-

impy.exploration.setup_dataframe), 35
create_dataframe() (in module ni-

impy.exploration.setup_dataframe), 35
create_missing_dataframe() (in module ni-

impy.exploration.setup_dataframe), 35
create_timeindex_dataframe() (in module ni-

impy.exploration.setup_dataframe), 35

D
daily_affect_variability() (in module ni-

impy.preprocessing.survey), 58
Data1 (class in niimpy.reading.database), 62
date_range() (in module niimpy.preprocessing.util), 61
df_normalize() (in module niimpy.preprocessing.util),

61
distance_matrix() (in module ni-

impy.preprocessing.location), 50
duration_util_screen() (in module ni-

impy.preprocessing.screen), 53

E
event_classification_screen() (in module ni-

impy.preprocessing.screen), 53
execute() (niimpy.reading.database.Data1 method), 63
exists() (niimpy.reading.database.Data1 method), 63
extract_features_app() (in module ni-

impy.preprocessing.application), 37
extract_features_audio() (in module ni-

impy.preprocessing.audio), 42
extract_features_battery() (in module ni-

impy.preprocessing.battery), 45
extract_features_comms() (in module ni-

impy.preprocessing.communication), 48
extract_features_location() (in module ni-

impy.preprocessing.location), 50
extract_features_screen() (in module ni-

impy.preprocessing.screen), 53
extract_features_tracker() (in module ni-

impy.preprocessing.tracker), 59

F
filter_dataframe() (in module ni-

impy.preprocessing.filter), 49
filter_location() (in module ni-

impy.preprocessing.location), 50

finalize() (niimpy.reading.database.sqlite3_stdev
method), 64

find_battery_gaps() (in module ni-
impy.preprocessing.battery), 45

find_home() (in module ni-
impy.preprocessing.location), 51

find_non_battery_gaps() (in module ni-
impy.preprocessing.battery), 45

find_real_gaps() (in module ni-
impy.preprocessing.battery), 45

first() (niimpy.reading.database.Data1 method), 63
format_battery_data() (in module ni-

impy.preprocessing.battery), 45

G
get_counts() (in module ni-

impy.exploration.eda.countplot), 28
get_speeds_totaldist() (in module ni-

impy.preprocessing.location), 51
get_survey_score() (niimpy.reading.database.Data1

method), 63
get_timerange_() (in module ni-

impy.exploration.eda.punchcard), 32
get_xticks_() (in module ni-

impy.exploration.eda.categorical), 24

H
heatmap() (in module ni-

impy.exploration.eda.missingness), 31
hourly() (niimpy.reading.database.Data1 method), 63

I
install_extensions() (in module ni-

impy.preprocessing.util), 61

L
last() (niimpy.reading.database.Data1 method), 63
location_distance_features() (in module ni-

impy.preprocessing.location), 51
location_number_of_significant_places() (in

module niimpy.preprocessing.location), 52
location_significant_place_features() (in mod-

ule niimpy.preprocessing.location), 52

M
matrix() (in module ni-

impy.exploration.eda.missingness), 31
missing_data_format() (in module ni-

impy.exploration.missingness), 34
missing_noise() (in module ni-

impy.exploration.missingness), 34
module

niimpy, 66

216 Index

Niimpy Documentation, Release dev

niimpy.analysis, 23
niimpy.exploration, 36
niimpy.exploration.eda, 34
niimpy.exploration.eda.categorical, 23
niimpy.exploration.eda.countplot, 26
niimpy.exploration.eda.lineplot, 28
niimpy.exploration.eda.missingness, 30
niimpy.exploration.eda.punchcard, 32
niimpy.exploration.missingness, 34
niimpy.exploration.setup_dataframe, 35
niimpy.preprocessing, 62
niimpy.preprocessing.application, 36
niimpy.preprocessing.audio, 38
niimpy.preprocessing.battery, 43
niimpy.preprocessing.communication, 46
niimpy.preprocessing.filter, 49
niimpy.preprocessing.location, 49
niimpy.preprocessing.sampledata, 53
niimpy.preprocessing.screen, 53
niimpy.preprocessing.survey, 58
niimpy.preprocessing.tracker, 59
niimpy.preprocessing.util, 60
niimpy.reading, 66
niimpy.reading.database, 62
niimpy.reading.read, 65

N
niimpy

module, 66
niimpy.analysis

module, 23
niimpy.exploration

module, 36
niimpy.exploration.eda

module, 34
niimpy.exploration.eda.categorical

module, 23
niimpy.exploration.eda.countplot

module, 26
niimpy.exploration.eda.lineplot

module, 28
niimpy.exploration.eda.missingness

module, 30
niimpy.exploration.eda.punchcard

module, 32
niimpy.exploration.missingness

module, 34
niimpy.exploration.setup_dataframe

module, 35
niimpy.preprocessing

module, 62
niimpy.preprocessing.application

module, 36
niimpy.preprocessing.audio

module, 38
niimpy.preprocessing.battery

module, 43
niimpy.preprocessing.communication

module, 46
niimpy.preprocessing.filter

module, 49
niimpy.preprocessing.location

module, 49
niimpy.preprocessing.sampledata

module, 53
niimpy.preprocessing.screen

module, 53
niimpy.preprocessing.survey

module, 58
niimpy.preprocessing.tracker

module, 59
niimpy.preprocessing.util

module, 60
niimpy.reading

module, 66
niimpy.reading.database

module, 62
niimpy.reading.read

module, 65
number_of_significant_places() (in module ni-

impy.preprocessing.location), 52

O
occurrence() (in module niimpy.preprocessing.util), 61
occurrence() (niimpy.reading.database.Data1

method), 63
open() (in module niimpy.reading.database), 64

P
plot_averages_() (in module ni-

impy.exploration.eda.lineplot), 28
plot_categories() (in module ni-

impy.exploration.eda.categorical), 24
plot_grouped_categories() (in module ni-

impy.exploration.eda.categorical), 24
plot_timeseries_() (in module ni-

impy.exploration.eda.lineplot), 29
punchcard_() (in module ni-

impy.exploration.eda.punchcard), 33
punchcard_plot() (in module ni-

impy.exploration.eda.punchcard), 33

Q
question_by_group() (in module ni-

impy.exploration.eda.categorical), 25
questionnaire_grouped_summary() (in module ni-

impy.exploration.eda.categorical), 25

Index 217

Niimpy Documentation, Release dev

questionnaire_summary() (in module ni-
impy.exploration.eda.categorical), 26

R
raw() (niimpy.reading.database.Data1 method), 63
read_csv() (in module niimpy.reading.read), 65
read_csv_string() (in module niimpy.reading.read),

65
read_sqlite() (in module niimpy.reading.read), 65
read_sqlite_tables() (in module ni-

impy.reading.read), 66
resample_data_() (in module ni-

impy.exploration.eda.lineplot), 29

S
screen_count() (in module ni-

impy.preprocessing.screen), 54
screen_duration() (in module ni-

impy.preprocessing.screen), 54
screen_duration_max() (in module ni-

impy.preprocessing.screen), 54
screen_duration_mean() (in module ni-

impy.preprocessing.screen), 55
screen_duration_median() (in module ni-

impy.preprocessing.screen), 55
screen_duration_min() (in module ni-

impy.preprocessing.screen), 56
screen_duration_std() (in module ni-

impy.preprocessing.screen), 56
screen_first_unlock() (in module ni-

impy.preprocessing.screen), 56
screen_missing_data() (in module ni-

impy.exploration.missingness), 34
screen_off() (in module niimpy.preprocessing.screen),

57
set_tz() (in module niimpy.preprocessing.util), 61
shutdown_info() (in module ni-

impy.preprocessing.battery), 45
sms_count() (in module ni-

impy.preprocessing.communication), 48
sqlite3_stdev (class in niimpy.reading.database), 64
step() (niimpy.reading.database.sqlite3_stdev method),

64
step_summary() (in module ni-

impy.preprocessing.tracker), 60
survey_convert_to_numerical_answer() (in mod-

ule niimpy.preprocessing.survey), 58
survey_print_statistic() (in module ni-

impy.preprocessing.survey), 58
survey_sum_scores() (in module ni-

impy.preprocessing.survey), 59

T
tables() (niimpy.reading.database.Data1 method), 64

timeplot() (in module niimpy.exploration.eda.lineplot),
29

timestamps() (niimpy.reading.database.Data1
method), 64

tmp_timezone() (in module niimpy.preprocessing.util),
61

to_datetime() (in module niimpy.preprocessing.util),
61

tracker_daily_step_distribution() (in module
niimpy.preprocessing.tracker), 60

U
uninstall_extensions() (in module ni-

impy.preprocessing.util), 61
user_table_counts() (ni-

impy.reading.database.Data1 method), 64
users() (niimpy.reading.database.Data1 method), 64
util_screen() (in module ni-

impy.preprocessing.screen), 57

V
validate_username() (ni-

impy.reading.database.Data1 method), 64

218 Index

	Introduction
	What
	For Who
	Why
	How

	Installation
	Architecture and workflow
	Layer: reading
	Layer: preprocessing
	Layer: exploration
	Layer: analysis
	Workflow

	File formats
	DataFrame format (in-memory)
	CSV files
	sqlite3 databases
	Other formats

	Data schema
	Format
	Standard columns in DataFrames
	Other standard columns in Niimpy
	Standard columns in on-disk formats

	How to cite
	See also
	Quick start
	Reading
	Preprocessing
	Visualization

	niimpy API docs
	niimpy package
	Subpackages
	niimpy.analysis package
	Module contents

	niimpy.exploration package
	Subpackages
	niimpy.exploration.eda package
	Submodules
	niimpy.exploration.eda.categorical module
	niimpy.exploration.eda.countplot module
	niimpy.exploration.eda.lineplot module
	niimpy.exploration.eda.missingness module
	niimpy.exploration.eda.punchcard module
	Module contents

	Submodules
	niimpy.exploration.missingness module
	niimpy.exploration.setup_dataframe module

	Module contents

	niimpy.preprocessing package
	Submodules
	niimpy.preprocessing.application module
	niimpy.preprocessing.audio module
	niimpy.preprocessing.battery module
	Returns
	Returns
	Returns
	Returns
	Returns
	Returns
	niimpy.preprocessing.communication module
	niimpy.preprocessing.filter module
	niimpy.preprocessing.location module
	niimpy.preprocessing.sampledata module
	niimpy.preprocessing.screen module
	niimpy.preprocessing.subject_selection module
	niimpy.preprocessing.survey module
	Parameters
	niimpy.preprocessing.tracker module
	niimpy.preprocessing.util module

	Module contents

	niimpy.reading package
	Submodules
	niimpy.reading.database module
	Database format
	Quick usage
	See also
	niimpy.reading.read module

	Module contents

	Submodules
	niimpy.demo module

	Module contents

	Demo notebook for Niimpy Exploration layer modules
	Introduction
	Sub-module overview
	Imports
	Plotly settings

	1) Categorical plot
	1.1) Reading the data
	1.1. Questionnaire summary
	1.2. Questionnaire grouped summary
	1.3. Questionnaire grouped summary score distribution
	2) Countplot
	Data

	2.1. User level observation count
	2.2. Group level observation count
	2.3. Group level value distributions
	3. Lineplot
	3.1. Lineplot
	3.1.1. Single user single feature
	3.1.2. Single user single feature index resetted
	3.1.3. Single user single feature, aggregated by day
	3.2. Multiple subjects single feature
	3.3. Group level hourly averages
	3.4. Group level weekday averages
	4. Punchcard
	4.1. Single user punchcard
	4.2. Multiple user punchcard
	4.3. Single user punchcard showing two features
	5) Missingness
	Data

	5.1. Data frequency by feature
	5.2. Average frequency by user
	5.3. Missingness matrix
	5.4. Missing data correlations
	Data

	Demo notebook for analysing location data
	Introduction
	Read data
	Filter data
	Downsample
	Feature extraction
	Implementing your own features

	Demo notebook for analyzing application data
	Introduction
	2. Read data
	A few words on missing data
	A few words on grouping the apps
	A few words on the role of the battery and screen

	* TIP! Data format requirements (or what should our data look like)
	4. Extracting features
	4.1.1 The argument dictionary for stand-alone functions (or how we specify the way a function works)
	4.1.2 Using the functions
	4.2 Extract features using the wrapper

	4.2.1 The argument dictionary for wrapper (or how we specify the way the wrapper works)
	4.2.2 Using the wrapper
	4.2.3 Wrapper and its default option

	5. Implementing own features

	Demo notebook for analyzing audio data
	Introduction
	2. Read data
	* TIP! Data format requirements (or what should our data look like)
	4. Extracting features
	4.1 Extract features using stand-alone functions
	4.1.1 The argument dictionary for stand-alone functions (or how we specify the way a function works)
	4.1.2 Using the functions

	4.2 Extract features using the wrapper
	4.2.1 The argument dictionary for wrapper (or how we specify the way the wrapper works)
	4.2.2 Using the wrapper
	4.2.3 Wrapper and its default option

	5. Implementing own features

	Demo notebook: Analysing battery data
	Read data
	Introduction

	Feature extraction
	Extracting features with the extract_features call

	Basic transformations
	Extracting single rows and columns
	Listing unique users
	List unique values
	Extract data of only one subject
	Renaming a column or columns
	Change datatypes
	Transforming a column to a new value
	Resample
	Groupby
	Summary statistics
	Hourly data
	Occurence

	Demo notebook for analyzing calls and SMS data
	1. Introduction
	2. Read data
	* TIP! Data format requirements (or what should our data look like)
	4. Extracting features
	4.1 Extract features using stand-alone functions
	4.1.1 The argument dictionary for stand-alone functions (or how we specify the way a function works)
	4.1.2 Using the functions

	4.2 Extract features using the wrapper
	4.2.1 The argument dictionary for wrapper (or how we specify the way the wrapper works)
	4.2.2 Using the wrapper
	4.2.3 Wrapper and its default option

	4.3 SMS computations

	* TIP! Data format requirements for SMS (special case)
	5. Implementing own features

	Demo notebook for analyzing screen on/off data
	Introduction
	2. Read data
	* TIP! Data format requirements (or what should our data look like)
	A few words on missing data
	A few words on the classification of the events
	A few words on the role of the battery

	4. Extracting features
	4.1.1 The argument dictionary for stand-alone functions (or how we specify the way a function works)
	4.1.2 Using the functions
	4.2 Extract features using the wrapper

	4.2.1 The argument dictionary for wrapper (or how we specify the way the wrapper works)
	4.2.2 Using the wrapper
	4.2.3 Wrapper and its default option

	Implementing own features

	Surveys
	Load data
	Preprocessing
	Print survey statistics

	Demo notebook: Analysing tracker data
	Introduction
	Read data
	Getting basic statistics
	Feature extraction

	Demo Notebook on Reading and Exploring the Studentlife Dataset
	Adding features
	General principles
	Adding an analysis
	Common things to note
	Improving old functions
	Example unit test
	Documentation notes

	About data sources
	Aware
	Standard columns
	AwareAccelerometer
	AwareApplicationCrashes
	AwareApplicationNotifications
	AwareBattery
	AwareCalls
	AwareESM
	AwareLocationDayOld
	AwareLocationDay
	AwareLocationSafe
	AwareMessagess
	AwareScreen
	AwareTimestamps

	Survey
	MMMBackgroundAnswers, MMMBaselineAnswers, MMMDiagnosticPatientAnswers, MMMFeedbackPostActiveAnswers, MMMPostActiveAnswers, MMMSurveyAllAnswers

	Indices and tables
	Python Module Index
	Index

